
Solaris Naming Administration
Guide

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303
U.S.A.

Part No: 806–1391–05
May 1999

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or
service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon
an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227–14(g)(2)(6/87) and
FAR 52.227–19(6/87), or DFAR 252.227–7015(b)(6/95) and DFAR 227.7202–3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays.
Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et SunTM a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface xxix

Part I Introduction to Solaris Naming

1. Introduction to Name Services 3

What Is a Name Service? 3

Solaris Name Services 8

DNS 8

/etc Files 9

NIS 9

NIS+ 9

FNS 10

2. The Name Service Switch 11

About the Name Service Switch 11

Format of the nsswitch.conf File 12

Comments in nsswitch.conf Files 16

Keyserver and publickey Entry in the Switch File 17

The nsswitch.conf Template Files 17

The Default Switch Template Files 17

Default nsswitch.conf File 19

DNS and Internet Access 20

Contents iii

DNS Forwarding for NIS+ Clients 20

DNS Forwarding for NIS Clients 20

Adding Compatibility With +/- Syntax 21

The Switch File and Password Information 21

FNS and the Name Service Switch 22

Maintaining Consistency Between FNS and the Switch File 22

Namespace Updates 22

Part II NIS+ Introduction and Overview

3. Introduction to NIS+ 27

About NIS+ 27

What NIS+ Can Do for You 28

How NIS+ Differs From NIS 29

NIS+ Security 32

NIS+ and the Name Service Switch 33

Solaris 1.x Releases and NIS-Compatibility Mode 33

NIS+ Administration Commands 34

NIS+ API 36

4. The NIS+ Namespace 39

NIS+ Files and Directories 39

Structure of the NIS+ Namespace 40

Directories 42

Domains 43

Servers 44

How Servers Propagate Changes 45

NIS+ Clients and Principals 47

Principal 47

Client 47

The Cold-Start File and Directory Cache 48

iv Solaris Naming Administration Guide ♦ May 1999

An NIS+ Server Is Also a Client 51

Naming Conventions 52

NIS+ Domain Names 53

Directory Object Names 54

Tables and Group Names 55

Table Entry Names 55

Host Names 56

NIS+ Principal Names 56

Accepted Name Symbols 57

NIS+ Name Expansion 57

NIS_PATH Environment Variable 57

5. NIS+ Tables and Information 59

NIS+ Table Structure 59

Columns and Entries 61

Search Paths 62

Ways to Set Up Tables 64

How Tables Are Updated 65

6. Security Overview 67

Solaris Security—Overview 67

NIS+ Security—Overview 69

NIS+ Principals 70

NIS+ Security Levels 71

Security Levels and Password Commands 71

NIS+ Authentication and Credentials—Introduction 72

User and Machine Credentials 72

DES versus LOCAL Credentials 72

User Types and Credential Types 74

NIS+ Authorization and Access—Introduction 74

Contents v

Authorization Classes 75

NIS+ Access Rights 78

The NIS+ Administrator 79

NIS+ Password, Credential, and Key Commands 79

Part III Administering NIS+

7. Administering NIS+ Credentials 83

NIS+ Credentials 84

How Credentials Work 84

Credential versus Credential Information 85

Authentication Components 85

How Principals are Authenticated 85

The DES Credential in Detail 89

DES Credential Secure RPC Netname 89

DES Credential Verification Field 90

How the DES Credential Is Generated 90

Secure RPC Password versus Login Password Problem 92

Cached Public Keys Problems 92

Where Credential-Related Information Is Stored 93

The cred Table in Detail 94

Creating Credential Information 95

The nisaddcred Command 96

Related Commands 97

How nisaddcred Creates Credential Information 97

The Secure RPC Netname and NIS+ Principal Name 98

Creating Credential Information for the Administrator 99

Creating Credential Information for NIS+ Principals 100

Administering NIS+ Credential Information 104

Updating Your Own Credential Information 104

vi Solaris Naming Administration Guide ♦ May 1999

Removing Credential Information 104

8. Administering NIS+ Keys 107

NIS+ Keys 107

Keylogin 108

Changing Keys for an NIS+ Principal 109

Changing the Keys 110

Changing Root Keys From Root 110

Changing Root Keys From Another Machine 112

Changing the Keys of a Root Replica from the Replica 112

Changing the Keys of a Nonroot Server 113

Updating Public Keys 114

The nisupdkeys Command 114

Updating Public Keys Arguments and Examples 114

Updating IP Addresses 116

Updating Client Key Information 116

Globally Updating Client Key Information 116

9. Administering Enhanced Security Credentials 119

Diffie-Hellman Extended Key 119

Transitioning to a New Public Key-based Security Mechanism 120

Configuring NIS+ Security Mechanisms 120

Creating New Security Mechanism Credentials 121

New Security Mechanism Credentials –Example 121

Adding New Keys to NIS+ Directory Objects 121

Adding New Public Keys to NIS+ Directory objects—Example 122

Configuring NIS+ Servers to Accept New Security Mechanism Credentials 122

Configuring NIS+ Servers to Accept New Security Mechanism
Credentials—Example 122

Configuring Workstations to Use New Security Mechanism Credentials 123

Contents vii

Configuring Workstations to Use New Security Mechanism
Credentials—Examples 123

Changing the Password Protecting New Credentials 124

Change Password Protecting New Credentials—Example 124

Configuring Servers to Accept only New Security Mechanism Credentials 124

Configuring Servers to Accept only New Security Mechanism
Credentials—Example 125

Removing Old Credentials from the cred Table 125

Removing old Credentials from the cred Table—Example 126

10. Administering NIS+ Access Rights 127

NIS+ Access Rights 128

Introduction to Authorization and Access Rights 128

Authorization Classes—Review 128

Access Rights—Review 129

Concatenation of Access Rights 129

How Access Rights Are Assigned and Changed 130

Table, Column, and Entry Security 130

Where Access Rights Are Stored 135

Viewing an NIS+ Object’s Access Rights 135

Default Access Rights 136

How a Server Grants Access Rights to Tables 137

Specifying Access Rights in Commands 137

Syntax for Access Rights 138

Displaying NIS+ Defaults—The nisdefaults Command 141

Setting Default Security Values 143

Displaying the Value of NIS_DEFAULTS 143

Changing Defaults 144

Resetting the Value of NIS_DEFAULTS 144

Specifying Nondefault Security Values at Creation Time 145

viii Solaris Naming Administration Guide ♦ May 1999

Changing Object and Entry Access Rights 145

Using nischmod to Add Rights 146

Using nischmod to Remove Rights 146

Specifying Column Access Rights 147

Setting Column Rights When Creating a Table 147

Adding Rights to an Existing Table Column 148

Removing Rights to a Table Column 149

Changing Ownership of Objects and Entries 149

Changing Object Owner With nischown 149

Changing Table Entry Owner With nischown 149

Changing an Object or Entry’s Group 150

Changing an Object’s Group With nischgrp 150

Changing a Table Entry’s Group With nischgrp 151

11. Administering Passwords 153

Using Passwords 154

Logging In 154

Changing Your Password 156

Choosing a Password 157

Administering Passwords 159

nsswitch.conf File Requirements 159

The nispasswd Command 159

The yppasswd Command 160

The passwd Command 160

The nistbladm Command 163

Related Commands 167

Displaying Password Information 167

Changing Passwords 169

Locking a Password 170

Contents ix

Managing Password Aging 171

Specifying Password Criteria and Defaults 178

12. Administering NIS+ Groups 183

Solaris Groups 183

NIS+ Groups 184

Related Commands 184

NIS+ Group Member Types 185

Member Types 185

Nonmember Types 186

Group Syntax 186

Using niscat With NIS+ Groups 187

Listing the Object Properties of a Group 187

The nisgrpadm Command 188

Creating an NIS+ Group 189

Deleting an NIS+ Group 190

Adding Members to an NIS+ Group 190

Listing the Members of an NIS+ Group 191

Removing Members From an NIS+ Group 192

Testing for Membership in an NIS+ Group 192

13. Administering NIS+ Directories 195

NIS+ Directories 196

Using the niscat Command With Directories 196

Listing the Object Properties of a Directory 196

The nisls Commandniscat Command With Directories 197

Listing the Contents of a Directory—Terse 198

Listing the Contents of a Directory—Verbose 198

The nismkdir Command 199

Creating a Directory 199

x Solaris Naming Administration Guide ♦ May 1999

Adding a Replica to an Existing Directory 201

The nisrmdir Command 202

Removing a Directory 203

Disassociating a Replica From a Directory 203

The nisrm Command 204

Removing Nondirectory Objects 205

The rpc.nisd Command 205

Starting a NIS-Compatible Daemon 206

Starting a DNS-Forwarding NIS-Compatible Daemon 206

Stopping the NIS+ Daemon 207

The nisinit Command 207

Initializing a Client 207

Initializing the Root Master Server 208

The nis_cachemgr Command 209

Starting and Stopping the Cache Manager 209

The nisshowcache Command 209

Displaying the Contents of the NIS+ Cache 210

Pinging and Checkpointing 210

The nisping Command 211

Displaying When Replicas Were Last Updated 211

Forcing a Ping 211

Checkpointing a Directory 212

The nislog Command 213

Displaying the Contents of the Transaction Log 214

The nischttl Command 215

Changing the Time-to-Live of an Object 217

Changing the Time-to-Live of a Table Entry 217

14. Administering NIS+ Tables 219

Contents xi

NIS+ Tables 219

The nistbladm Command 220

nistbladm Syntax Summary 220

nistbladm and Column Values 221

nistbladm , Searchable Columns, and Keysnistbladm and Column
Values 223

nistbladm and Indexed Names 224

nistbladm and Groups 224

Creating a New Table 225

Specifying Table Columns 225

Deleting a Table 227

Adding Entries to a Table 228

Adding a Table Entry With the −a Option 228

Adding a Table Entry With the −A Option 230

Modifying Table Entries 231

Editing a Table Entry With the −e Option 231

Editing a Table Entry With the −E Option 233

Removing Table Entries 234

Removing Single Table Entries 234

Removing Multiple Entries From a Table 234

The niscat Command 235

Syntax 235

Displaying the Contents of a Table 236

Displaying the Object Properties of a Table or Entry 237

The nismatch and nisgrep Commands 238

About Regular Expressions 239

Syntax 240

Searching the First Column 241

xii Solaris Naming Administration Guide ♦ May 1999

Searching a Particular Column 241

Searching Multiple Columns 242

The nisln Command 242

Syntax 243

Creating a Link 243

The nissetup Command 243

Expanding a Directory Into an NIS+ Domain 244

Expanding a Directory Into an NIS-Compatible Domain 244

The nisaddent Command 245

Syntax 245

Loading Information From a File 246

Loading Data From an NIS Map 247

Dumping the Contents of an NIS+ Table to a File 249

15. Server-Use Customization 251

NIS+ Servers and Clients 251

Default Client Search Behavior 252

Designating Preferred Servers 252

NIS+ Over Wide Area Networks 252

Optimizing Server-Use—Overview 253

nis_cachemgr is Required 253

Global Table or Local File 253

Preference Rank Numbers 254

Preferred Only Servers Versus All Servers 255

Viewing Preferences 256

Server and Client Names 256

Server Preferences 256

When Server Preferences Take Effect 256

Using the nisprefadm Command 257

Contents xiii

Viewing Current Server Preferences 259

How to View Preferences for a Machine 259

How to View Global Preferences for Single Machine 259

How to View Global Preferences for a Subnet 260

How to Specify Preference Rank Numbers 260

Specifying Global Server Preferences 260

How to Set Global Preferences for a Subnet 261

How to Set Global Preferences for an Individual Machine 261

How to Set Global Preferences for a Remote Domain 262

Specifying Local Server Preferences 263

How to Set Preferences on a Local Machine 263

Modifying Server Preferences 264

How to Change a Server’s Preference Number 264

How to Replace One Server With Another in a Preference List 264

How to Remove Servers From Preference Lists 265

How to Replace an Entire Preferred Server List 266

Specifying Preferred-Only Servers 266

How to Specify Preferred-Only Servers 267

How to Revert to Using Non-Preferred Servers 267

Ending Use of Server Preferences 268

How to Eliminate Global Server Preferences 268

How to Eliminate Local Server Preferences 268

Putting Server Preferences Into Immediate Effect 270

How to Immediately Implement Preference Changes 270

16. NIS+ Backup and Restore 271

Backing Up Your Namespace With nisbackup 271

nisbackup Syntax 272

What nisbackup Backs Up 273

xiv Solaris Naming Administration Guide ♦ May 1999

The Backup Target Directory 274

Maintaining a Chronological Sequence of NIS+ Backups 274

Backing Up Specific NIS Directories 275

Backing Up an Entire NIS+ Namespace 275

Backup Directory Structure 275

Backup Files 276

Restoring Your NIS+ Namespace With nisrestore 277

Prerequisites to Running nisrestore 277

nisrestore Syntax 278

Using nisrestore 278

Using Backup/Restore to Set Up Replicas 279

Replacing Server Machines 280

Machine Replacement Requirements 280

How to Replace Server Machines 280

17. Removing NIS+ 283

Removing NIS+ From a Client Machine 283

Removing NIS+ That Was Installed Using nisclient 283

Removing NIS+ That Was Installed Using NIS+ Commands 284

Removing NIS+ From a Server 284

Removing the NIS+ Namespace 286

Part IV Administering NIS

18. Network Information Service (NIS) 291

NIS Introduction 291

NIS Architecture 292

NIS and NIS+ 293

NIS and FNS 294

NIS Machine Types 294

NIS Servers 294

Contents xv

NIS Clients 295

NIS Elements 295

The NIS Domain 295

NIS Daemons 295

NIS Utilities 296

NIS Maps 297

Summary of NIS-Related Commands 301

NIS Binding 302

Server-List Mode 303

Broadcast Mode 303

Differences Between This and Earlier NIS Versions 304

NSKit Discontinued 304

The ypupdated Daemon 304

/var/yp/securenets 304

Multihomed Machine Support 305

Sun Operating Environment 4.X Compatibility Mode 305

Using the Name Service Switch 306

19. Administering NIS 309

Password Files and Namespace Security 310

Administering NIS Users 310

Adding a New User to an NIS Domain 310

User Passwords 312

Netgroups 313

Working With NIS Maps 314

Obtaining Map Information 314

Changing a Map’s Master Server 315

Modifying Configuration Files 317

Modifying and Using the Makefile 317

xvi Solaris Naming Administration Guide ♦ May 1999

Updating Existing Maps 320

Adding a New Slave Server 326

Using NIS with C2 Security 328

Changing a Machine’s NIS Domain 328

Using NIS in Conjunction With DNS 328

Problems in Mixed NIS Domains 330

Turning Off NIS Services 330

NIS Problem Solving and Error Messages 331

Part V Administering FNS

20. FNS Quickstart 335

Federated Naming Service (FNS) 336

X/Open Federated Naming (XFN) 336

Why FNS? 336

Composite Names and Contexts 336

Composite Names 336

Contexts 337

Attributes 337

Enterprise Naming Services 338

NIS+ 338

NIS 338

Files-Based 339

Global Naming Services 339

FNS Naming Policies 340

Organization Names 340

Site Names 341

User Names 342

Host Names 342

Service Names 342

Contents xvii

File Names 343

Getting Started 343

Designating a Non-Default Naming Service 343

Creating the FNS Namespace 343

NIS+ Considerations 344

NIS Considerations 345

Files Considerations 345

Browsing the FNS Namespace 345

Listing Context Contents 346

Displaying the Bindings of a Composite Name 346

Showing the Attributes of a Composite Name 347

Searching for FNS Information 347

Updating the Namespace 348

FNS Administration Privileges 348

Binding a Reference to a Composite Name 349

Removing Bindings 351

Creating New Contexts 351

Creating File Contexts 352

Creating Printer Contexts 353

Destroying Contexts 355

Working With Attributes 355

Federating a Global Namespace 356

Copying and Converting FNS Contexts 357

Namespace Browser Programming Examples 358

Listing Names Bound in a Context 359

Creating a Binding 360

Listing and Working Wtih Object Attributes 361

Searching for Objects in a Context 365

xviii Solaris Naming Administration Guide ♦ May 1999

21. Federated Naming Overview 367

XFN and FNS 367

The XFN Model 369

XFN Architectural Model 369

User’s View 372

File System View 372

Application View 373

API Usage Model 374

Federated Naming Service 374

FNS and Application Development 374

FNS and Composite Names 375

FNS Policy Principles 375

FNS in the Solaris Environment 376

Solaris Enterprise-Level Naming Services 376

FNS and NIS+ Naming 377

FNS and NIS Naming 377

FNS and Files-Based Naming 378

Global Naming Services 378

FNS and DNS 379

FNS and X.500 379

FNS and Applications 380

FNS File Naming 380

FNS Printer Naming 380

FNS Application Support 380

Administering FNS 381

Troubleshooting and Error Messages 382

22. FNS Policies 383

Introduction to FNS and XFN Policies 384

Contents xix

What FNS Policies Specify 384

What FNS Policies Do Not Specify 384

Policies for the Enterprise Namespace 385

Default FNS Enterprise Namespaces 385

Enterprise Namespace Identifiers 386

Default FNS Namespaces 387

Significance of Trailing Slash 391

FNS Reserved Names 391

Composite Name Examples 392

Structure of the Enterprise Namespace 393

Enterprise Root 396

Using Three Dots to Identify the Enterprise Root 396

Using org// to Identify the Enterprise Root 396

Enterprise Root Subordinate Contexts 397

Initial Context Bindings for Naming Within the Enterprise 401

FNS and Enterprise Level Naming 406

How FNS Policies Relate to NIS+ 407

How FNS Policies Relate to NIS 409

How FNS Policies Relate to Files-Based Naming 410

Target Client Applications of FNS Policies 410

FNS File System Namespace 413

NFS File Servers 413

The Automounter 414

The FNS Printer Namespace 415

Policies for the Global Namespace 415

Initial Context Bindings for Global Naming 416

Federating DNS 416

Federating X.500/LDAP 417

xx Solaris Naming Administration Guide ♦ May 1999

23. FNS and Enterprise Name Services 419

FNS and Enterprise-Level Naming Services 419

Choosing an Enterprise-Level Name Service 420

FNS and Naming Service Consistency 420

FNS and Solstice AdminSuite 420

Checking Naming Inconsistencies 421

Selecting a Naming Service 422

Default Naming Service 422

When NIS+ and NIS Coexist 423

Advanced FNS and NIS+ Issues 423

Migrating to NIS+ From NIS or Files-Based Naming 423

Mapping FNS Contexts to NIS+ Objects 423

Browsing FNS Structures Using NIS+ Commands 423

Checking Access Control 424

Advanced FNS and NIS Issues 425

NIS and FNS Maps and Makefiles 426

Large FNS Contexts 426

Printer Backward Compatibility 427

Migrating From NIS to NIS+ 427

Advanced FNS and File-Based Naming Issues 428

FNS Files 428

Migrating From Files-Based Naming to NIS or NIS+ 429

Printer Backward Compatibility 429

24. Enterprise Level Contexts 431

Creating Enterprise Level Contexts 432

Creating an Organization Context 433

All Hosts Context 434

Single Host Context 435

Contents xxi

Host Aliases 435

All–Users Context 435

Single User Context 436

Service Context 436

Printer Context 437

Generic Context 437

Site Context 438

File Context 439

Namespace Identifier Context 439

Administering Enterprise Level Contexts 440

Displaying the Binding 440

Listing the Context 441

Binding a Composite Name to a Reference 443

Removing a Composite Name 446

Renaming an Existing Binding 446

Destroying a Context 446

25. Administering File Contexts 449

File Contexts Administration 449

Creating a File Context With fncreate_fs 450

Creating File Contexts With an Input File 451

Creating File Contexts With Command-line Input 452

Advanced Input Formats 453

Multiple Mount Locations 453

Variable Substitution 453

Backward Compatibility Input Format 454

26. FNS and Global Naming Systems 455

FNS and Global Naming Systems 455

Obtaining the Root Reference 456

xxii Solaris Naming Administration Guide ♦ May 1999

NIS+ Root Reference 456

NIS Root Reference 457

Federating Under DNS 458

Federating Under X.500/LDAP 459

Specifying an X.500 Root Reference 459

Specifying an X.500 Client API 461

27. Administering FNS Attributes 463

Attributes Overview 463

Examining Attributes 463

Searching for Objects Associated With an Attribute 465

Customizing Attribute Searches 465

Updating Attributes 466

Adding an Attribute 467

Deleting an Attribute 468

Listing an Attribute 468

Modifying an Attribute 469

Other Options 469

Part VI Administering DNS

28. Introduction to DNS 473

DNS Basics 474

Name-to-Address Resolution 474

DNS Administrative Domains 476

in.named and DNS Name Servers 477

DNS Clients and the Resolver 477

Introducing the DNS Namespace 478

DNS Namespace Hierarchy 478

DNS Hierarchy in a Local Domain 479

DNS Hierarchy and the Internet 479

Contents xxiii

Zones 483

Reverse Mapping 483

DNS Servers 484

Master Servers 485

Caching and Cache-only Servers 485

Root Domain Name Server 486

How DNS Affects Mail Delivery 487

DNS Configuration and Data Files 488

Names of DNS Data Files 488

The named.conf File 489

The named.ca File 492

The hosts File 492

The hosts.rev File 492

The named.local File 492

$INCLUDE Files 493

Data File Resource Record Format 493

Standard Resource Record Format 493

Special Resource Record Characters 494

Control Entries 495

Resource Record Types 496

Solaris DNS BIND Implementation 503

29. Administering DNS 505

Trailing Dots in Domain Names 505

Modifying DNS Data Files 506

Changing the SOA Serial Number 506

Forcing in.named to Reload DNS Data 507

Adding and Deleting Machines 507

Adding a Machine 507

xxiv Solaris Naming Administration Guide ♦ May 1999

Removing a Machine 508

Adding Additional DNS Servers 509

Creating DNS Subdomains 509

Planning Your Subdomains 510

Setting Up a Subdomain 511

DNS Error Messages and Problem Solving 513

Part VII Appendices

A. Problems and Solutions 517

Troubleshooting NIS+ 518

NIS+ De-Bugging Options 518

NIS+ Administration Problems 519

NIS+ Database Problems 523

NIS+ and NIS Compatibility Problems 524

NIS+ Object Not Found Problems 526

NIS+ Ownership and Permission Problems 529

NIS+ Security Problems 531

NIS+ Performance and System Hang Problems 540

NIS+ System Resource Problems 544

NIS+ User Problems 545

Other NIS+ Problems 547

NIS Problems and Solutions 549

Symptoms: 549

NIS Problems Affecting One Client 549

NIS Problems Affecting Many Clients 553

DNS Problems and Solutions 556

Clients Can Find Machine by Name but Server Cannot 556

Changes Do Not Take Effect or Are Erratic 557

DNS Client Cannot Lookup “Short” Names 558

Contents xxv

Reverse Domain Data Not Correctly Transferred to Secondary 558

Server Failed and Zone Expired Problems 559

rlogin , rsh , and ftp Problems 560

Other DNS Syntax Errors 560

FNS Problems and Solutions 561

Cannot Obtain Initial Context 561

Nothing in Initial Context 561

“No Permission” Messages (FNS) 562

fnlist Does not List Suborganizations 562

Cannot Create Host- or User-related Contexts 563

Cannot Remove a Context You Created 563

Name in Use with fnunbind 564

Name in Use with fnbind /fncreate -s 564

fndestroy /fnunbind Does Not Return Operation Failed 565

B. Error Messages 567

About Error Messages 567

Error Message Context 567

Context-Sensitive Meanings 568

How Error Messages Are Alphabetized 568

Numbers in Error Messages 569

FNS Error Messages 569

Common Namespace Error Messages 570

C. Information in NIS+ Tables 615

NIS+ Tables 616

NIS+ Tables and Other Name Services 616

NIS+ Table Input File Format 616

auto_home Table 617

auto_master Table 617

xxvi Solaris Naming Administration Guide ♦ May 1999

bootparams Table 618

client_info Table 620

cred Table 620

ethers Table 621

group Table 622

hosts Table 622

mail_aliases Table 623

netgroup Table 624

netmasks Table 625

networks Table 626

passwd Table 626

protocols Table 628

rpc Table 629

services Table 629

timezone Table 630

D. FNS Reference Formats and Syntax 631

DNS Text Record Format for XFN References 631

X.500 Attribute Syntax for XFN References 633

Object Classes 634

Glossary 637

Index 649

Contents xxvii

xxviii Solaris Naming Administration Guide ♦ May 1999

Preface

Solaris Naming Administration Guide describes how to customize and administer the
four name services: NIS+, NIS, FNS, and DNS once they have been initially set up
and configured. This manual is part of the Solaris 2.6 Release System and Network
Administration manual set.

Who Should Use This Book
This book is written primarily for system and network administrators, It assumes
you are an experienced system administrator.

Although this book introduces networking concepts relevant to Solaris name
services, it makes no attempt to explain networking fundamentals or describe the
administration tools offered by the Solaris environment. If you administer networks,
this manual assumes you already know how they work and have already chosen
your favorite tools.

(Solaris Naming Setup and Configuration Guide explains how to initially set up and
configure the four Solaris naming services.)

How This Book Is Organized
This book has seven parts:

Preface xxix

Part I, Introduction to Solaris Naming
This part provides an introduction and overview of namespaces and Solaris naming
services, and using the nsswitch.conf file to coordinate naming service usage.

� Chapter 1 provides an overview describing what namespaces and naming services
are and what they do, then briefly describes the four Solaris naming services:
DNS, NIS, FNS, and NIS+.

� Chapter 2. You use the name service switch to coordinate the use of different
naming services. This chapter describes the name service switch, what it does, and
how clients use it to obtain naming information from one or more sources.

Part II, NIS+ Introduction and Overview
This part describes NIS+:

� Chapter 3 provides an overview of the Network Information Service Plus (NIS+).

� Chapter 4 describes the structure of the NIS+ namespace, the servers that support
it, and the clients that use it.

� Chapter 5 describes the structure of NIS+ tables and provides a brief overview of
how they can be set up.

� Chapter 6 describes the NIS+ security system and how it affects the entire NIS+
namespace.

Part III, Administering NIS+
This part describes how to administer a functioning NIS+ namespace.

� Chapter 7 describes NIS+ credentials and how to administer them.

� Chapter 8 describes NIS+ keys and how to administer them.

� Chapter 10 describes NIS+ access rights and how to administer them.

� Chapter 11 describes how to use the passwd command from the point of view of
an ordinary user (NIS+ principal) and how an NIS+ administrator manages the
password system.

� Chapter 12 describes NIS+ groups and how to administer them.

� Chapter 13 describes NIS+ directory objects and how to administer them.

� Chapter 14 describes NIS+ tables and how to administer them. (See Appendix C,
for detailed descriptions of the default NIS+ tables.)

� Chapter 15 describes how to customize and control which servers NIS+ clients use.

� Chapter 16 describes how to backup and restore an NIS+ namespace.

xxx Solaris Naming Administration Guide ♦ May 1999

� Chapter 17 describes how to use the NIS+ directory administration commands to
remove NIS+ from clients, servers, and the namespace as a whole.

Part IV, Administering NIS
� This part describes the Network Information Service (NIS) and how to administer it.

� Chapter 18 describes NIS.

� Chapter 19 describes how to administer NIS.

Part V, Administering FNS
This part describes the Federated Naming Service (FNS) and how to administer it.

� Chapter 20 is for experienced administrators. It provides a brief overview of FNS,
basic set up and configuration steps, and a programming example.

� Chapter 21 describes the Federated Naming Service (FNS) which is Sun’s
implementation of the X/Open XFN federated naming standard.

� Chapter 22 describes FNS policies.

� Chapter 23 describes the relationship between FNS and enterprise level naming
services.

� Chapter 24 describes how to individually create, and administer existing
enterprise-level contexts.

� Chapter 25 describes how to administer application specific contexts.

� Chapter 26 describes two global naming systems (DNS and X.500/LDAP) and
how to federate them under FNS.

� Chapter 27 describes FNS attributes and how to administer them.

Part VI, Administering DNS
This part describes the Domain Name System and how to administer it.

� Chapter 28 describes the Domain Name System.

� Chapter 29 describes how to administer the Domain Name System.

Part VII, Appendices
This part provides reference material and a glossary.

xxxi

� Appendix A describes some of the problems you may encounter while
administering Solaris namespaces and how to correct them.

� Appendix B provides an alphabetic listing of some commonly encountered error
messages.

� Appendix C summarizes the information stored in the default NIS+ tables. (See
Chapter 14 for general information regarding NIS+ tables and the commands used
to administer them.)

� Appendix D contains supplemental information about the use of DNS text (TXT)
records and the use of X.500 attributes in XFN references.

� Glossary defines namespace terms.

Related Books
� Solaris Naming Setup and Configuration Guide—Describes how to set up, and

configure NIS+ and DNS.

� NIS+ Transition Guide—Describes how to make the transition from NIS to NIS+.

Additional books not part of the Solaris documentation set:

� DNS and Bind, by Cricket Liu and Paul Albitz (O’Reilly, 1992).

� Managing NFS and NIS by Hal Stern, (O’Reilly, 1993).

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals form Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals using this program.

For a list of documents and how to order them, see the catalog section of
SunExpress

TM

on The Internet at http://www.sun.com/sunexpress.

What Typographic Changes Mean
The following table describes the typographic changes used in this book.

xxxii Solaris Naming Administration Guide ♦ May 1999

TABLE P–1 Typographic Conventions

Typeface or
Symbol

Meaning Example

AaBbCc123 The names of commands,
files, and directories;
on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted
with on-screen computer
output

machine_name%su

Password:

AaBbCc123 Command-line placeholder:

replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in User’s Guide. These
are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

xxxiii

xxxiv Solaris Naming Administration Guide ♦ May 1999

PART I Introduction to Solaris Naming

This part provides an introduction and overview of namespaces and Solaris naming
services, and using the nsswitch.conf file to coordinate naming service usage.

� Chapter 1

� Chapter 2

CHAPTER 1

Introduction to Name Services

This chapter provides an overview describing what namespaces and naming services
are and what they do. (Other names for name services are network information services
and directory services.) This chapter then briefly describes the four Solaris naming
services: DNS, NIS, FNS, and NIS+.

� “What Is a Name Service?” on page 3

� “Solaris Name Services” on page 8

� “DNS” on page 8

� “NIS” on page 9

� “NIS+” on page 9

� “FNS” on page 10

Directions for setting up NIS+, NIS, DNS, and FNS namespaces are contained in
Solaris Naming Setup and Configuration Guide. See Glossary for definitions of terms
and acronyms you don’t recognize.

What Is a Name Service?
Name services store information in a central place that users, workstations, and
applications must have to communicate across the network such as:

� Machine (host) names and addresses

� User names

� Passwords

� Access permissions

3

Without a central name service, each workstation would have to maintain its own
copy of this information. Name service information may be stored in files, maps, or
database tables. Centrally locating this data makes it easier to administer large
networks.

Name services are fundamental to any computing network. Among other features, a
name service provides functionality that:

� Associates (binds) names with objects

� Resolves names to objects

� Removes bindings

� Lists names

� Renames

A network information service enables workstations to be identified by common
names instead of numerical addresses. This makes communication simpler because
users don’t have to remember and try to enter cumbersome numerical addresses like
“129.44.3.1.”

For example, take a simple network of three workstations named, pine , elm , and
oak . Before pine can send a message to either elm or oak , it must know their
numerical network addresses. For this reason, it keeps a file, /etc/hosts , that
stores the network address of every workstation in the network, including itself.

pine elm oak

/etc/hosts

123.456.7.1 pine
123.456.7.2 elm
123.456.7.3 oak

Likewise, in order for elm and oak to communicate with pine or with each other,
they must keep similar files.

pine elm oak

/etc/hosts

123.456.7.1 pine
123.456.7.2 elm
123.456.7.3 oak

/etc/hosts

123.456.7.1 pine
123.456.7.2 elm
123.456.7.3 oak

/etc/hosts

123.456.7.1 pine
123.456.7.2 elm
123.456.7.3 oak

Addresses are not the only network information that workstations need to store.
They also need to store security information, mail data, information about their
Ethernet interfaces, network services, groups of users allowed to use the network,
services offered on the network, and so on. As networks offer more services, the list

4 Solaris Naming Administration Guide ♦ May 1999

grows. As a result, each workstation may need to keep an entire set of files similar to
/etc/hosts .

As this information changes, administrators must keep it current on every
workstation in the network. In a small network this is simply tedious, but on a
medium or large network, the job becomes not only time-consuming but nearly
unmanageable.

A network information service solves this problem. It stores network information on
servers and provides it to any workstation that asks for it:

Workstations
 (request information)

pine elm oak

forest

 Server

Information

 (stores information)

 (stored on server)

/etc/hosts

123.456.7.1 pine
123.456.7.2 elm
123.456.7.3 oak

The workstations are known as clients of the server. Whenever information about the
network changes, instead of updating each client’s local file, an administrator
updates only the information stored by the network information service. This
reduces errors, inconsistencies between clients, and the sheer size of the task.

This arrangement, of a server providing centralized services to clients across a
network, is known as client-server computing.

Although the chief purpose of a network information service is to centralize
information, another is to simplify network names. For example, assume your
company has set up a network and connected it to the Internet. The Internet has
assigned your network the network number of 129.44.0.0 and the domain name
doc.com . Your company has two divisions, Sales and Manufacturing (Manf), so its
network is divided into a main net and two subnets, one for each division. Each net
has its own address:

Introduction to Name Services 5

129.44.1.0

129.44.2.0 129.44.3.0

Sales Division Manf Division

 doc.com

Each division could be identified by its network address, as shown above, but
descriptive names made possible by name services would be preferable:

sales.doc.com manf.doc.com

Sales Division Manf Division

 doc.com

So, instead of addressing mail or other network communications to 129.44.1.0 ,
they could be addressed simply to doc . Instead of addressing them to 129.44.2.0
or 129.44.3.0 , they could be addressed to sales.doc or manf.doc .

Names are also more flexible than physical addresses. While physical networks tend
to remain stable, the organizations that use them tend to change. A network
information service can act as a buffer between an organization and its physical
network. This is because a network information service is mapped to the physical
network, not hard-wired to it.

For example, assume that the doc.com network is supported by three servers, S1,
S2, and S3, and that two of those servers, S1 and S3, support clients:

doc

sales.doc

C6C1 C3C2 C5C4

S1

S2

S3
manf.doc

Clients C1, C2, and C3 would obtain their network information from server S1.
Clients C4, C5, and C6 would obtain it from server S3. The resulting network is
summarized in Table 1–1. (The table is a generalized representation of that network
but does not resemble an actual network information map.)

6 Solaris Naming Administration Guide ♦ May 1999

TABLE 1–1 Representation of doc.com Network

Network Address Network Name Server Clients

129.44.1.0 doc S1

129.44.2.0 sales.doc S2 C1, C2, C3

129.44.3.0 manf.doc S3 C4, C5, C6

Now assume that you create a third division, Testing, which borrowed some
resources from the other two divisions, but did not create a third subnet. The
physical network would then no longer parallel the corporate structure:

129.44.1.0

129.44.2.0 129.44.3.0

Sales Division + Test Division Manf Division + Test Division

 doc.,com.

Traffic for the Test Division would not have its own subnet, but would instead be
split between 129.44.2.0 and 129.44.3.0 . However, with a network information
service, the Test Division traffic could have its own dedicated network:

doc

sales.doc manf.doc test.doc

Sales Division

Test Division

 Manf Division

Thus, when an organization changes, its network information service can simply
change its mapping:

doc

sales.doc manf.doc

test.doc

C1

C3

C2 C6

C4

C5

S2

S4

S3S1

Introduction to Name Services 7

Now clients C1 and C2 would obtain their information from server S2; C3 and C4
from server S4; and C5 and C6 from server S3.

Subsequent changes in your organization would continue to be accommodated by
changes to the “soft” network information structure without reorganizing the “hard”
network structure.

Solaris Name Services
The Solaris 2.6 release provides the following name services:

� DNS, the Domain Name System (see “DNS” on page 8).

� /etc files, the original UNIX naming system (see “/etc Files” on page 9).

� NIS, the Network Information Service (see “NIS” on page 9).

� NIS+, the Network Information Service Plus (see “NIS+” on page 9).

� FNS, the Federated Naming Service, supports the use of different autonomous
naming systems in a single Solaris environment (see “FNS” on page 10).

Most modern networks use two or more of these services in combination. When
more than one service is used, they are coordinated by the nsswitch.conf file
which is discussed in Chapter 2.

DNS
DNS, the Domain Name System, is the name service provided by the Internet for
TCP/IP networks. It was developed so that workstations on the network could be
identified with common names instead of Internet addresses. DNS performs naming
between hosts within your local administrative domain and across domain
boundaries.

The collection of networked workstations that use DNS are referred to as the DNS
namespace. The DNS namespace can be divided into a hierarchy of domains. A DNS
domain is simply a group of workstations. Each domain is supported by two or
more name servers: a principal server and one or more secondary servers. Each server
implements DNS by running a daemon called in.named . On the client’s side, DNS
is implemented through the “resolver.” The resolver’s function is to resolve users’
queries; to do that, it queries a name server, which then returns either the requested
information or a referral to another server.

8 Solaris Naming Administration Guide ♦ May 1999

/etc Files
The original host-based UNIX naming system was developed for stand-alone UNIX
machines and then adapted for network use. Many old UNIX operating systems and
machines still use this system, but it is not well suited for large complex networks.

NIS
The Network Information Service (NIS) was developed independently of DNS and has
a slightly different focus. Whereas DNS focuses on making communication simpler
by using workstation names instead of numerical IP addresses, NIS focuses on
making network administration more manageable by providing centralized control
over a variety of network information. NIS stores information about workstation
names and addresses, users, the network itself, and network services. This collection
of network information is referred to as the NIS namespace.

NIS namespace information is stored in NIS maps. NIS maps were designed to
replace UNIX /etc files, as well as other configuration files, so they store much
more than names and addresses. As a result, the NIS namespace has a large set of
maps (see “NIS Maps” on page 297).

NIS uses a client-server arrangement similar to DNS. Replicated NIS servers provide
services to NIS clients. The principal servers are called master servers, and for
reliability, they have backup, or slave servers. Both master and slave servers use the
NIS information retrieval software and both store NIS maps. For more information
on NIS Architecture, see “NIS Architecture” on page 292.

See Administering NIS for more information about NIS and how to administer it.

NIS+
The Network Information Service Plus (NIS+) is similar to NIS but with many more
features. NIS+ is not an extension of NIS. It is a new software program.

The NIS+ name service is designed to conform to the shape of the organization that
installs it, wrapping itself around the bulges and corners of almost any network
configuration. Unlike NIS, the NIS+ name space is dynamic because updates can
occur and be put into effect at any time by any authorized user.

NIS+ enables you to store information about workstation addresses, security
information, mail information, Ethernet interfaces, and network services in central
locations where all workstations on a network can have access to it. This
configuration of network information is referred to as the NIS+ namespace.

The NIS+ namespace is hierarchical, and is similar in structure to the UNIX directory
file system. The hierarchical structure allows an NIS+ namespace to be configured to
conform to the logical hierarchy of an organization. The namespace’s layout of

Introduction to Name Services 9

information is unrelated to its physical arrangement. Thus, an NIS+ namespace can be
divided into multiple domains that can be administered autonomously. Clients may
have access to information in other domains in addition to their own if they have the
appropriate permissions.

NIS+ uses a client-server model to store and have access to the information
contained in an NIS+ namespace. Each domain is supported by a set of servers. The
principal server is called the master server and the backup servers are called replicas.
The network information is stored in 16 standard NIS+ tables in an internal NIS+
database. Both master and replica servers run NIS+ server software and both
maintain copies of NIS+ tables. Changes made to the NIS+ data on the master server
are incrementally propagated automatically to the replicas.

NIS+ includes a sophisticated security system to protect the structure of the
namespace and its information. It uses authentication and authorization to verify
whether a client’s request for information should be fulfilled. Authentication
determines whether the information requester is a valid user on the network.
Authorization determines whether a particular user is allowed to have or modify the
information requested. See Chapter 6 for a more detailed description of NIS+
security, and Chapter 8 for information on administering NIS+ security.

FNS
FNS, the Federated Naming Service, supports the use of different autonomous
naming systems in a single Solaris environment. FNS allows you to use a single,
simple naming system interface for all of the different name services on your
network. FNS conforms to the X/Open federated naming (XFN) specification.

FNS is not a replacement for NIS+, NIS, DNS, or /etc files. Rather, FNS is
implemented on top of these services and allows you to use a set of common names
with desktop applications.

See Administering FNS for more information about FNS and how to administer it.

10 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 2

The Name Service Switch

This chapter describes the name service switch, what it does, and how clients use it
to obtain naming information from one or more sources. You use the name service
switch to coordinate usage of different naming services.

� “About the Name Service Switch” on page 11

� “The nsswitch.conf Template Files” on page 17

� “DNS and Internet Access” on page 20

� “Adding Compatibility With +/- Syntax” on page 21

� “The Switch File and Password Information” on page 21

� “FNS and the Name Service Switch” on page 22

About the Name Service Switch
The name service switch is a file named nsswitch.conf . It controls how a client
workstation or application obtains network information. It is used by client
applications that call any of the getXbyY() interfaces such as:

� gethostbyname()

� getpwuid()

� getpwnam()

The name service switch is often referred to as simply the switch or the switch file.
Each workstation has a switch file in its /etc directory. Each line of that file identifies
a particular type of network information, such as host, password, and group,
followed by one or more sources where the client is to look for that information.

11

A client can obtain naming information from one or more of the switch’s sources. For
example, an NIS+ client could obtain its hosts information from an NIS+ table and
its password information from a local /etc file. In addition, it could specify the
conditions under which the switch must use each source (see“Search Criteria” on
page 13).

The Solaris 2.6 release software automatically loads an nsswitch.conf file into
every workstation’s /etc directory as part of the installation process. Three alternate
(template) versions of the switch file are also loaded into /etc :

� /etc/nsswitch.files

� /etc/nsswitch.nis

� /etc/nsswitch.nisplus

These three files are alternate default switch files. Each one is designed for a different
primary naming service: /etc files, NIS, or NIS+. When Solaris 2.6 release software
is first installed on a workstation, the installer selects the workstation’s default name
service: NIS+, NIS, or local files. During installation, the corresponding template file
is copied to nsswitch.conf . For example, for a workstation client using NIS+, the
installation process copies nsswitch.nisplus to nsswitch.conf . Unless you
have an unusual namespace, the default template file as copied to nsswitch.conf
should be sufficient for normal operation.

No default file is provided for DNS, but you can edit any of these files to use DNS
(see “DNS and Internet Access” on page 20).

If you later change a workstation’s primary name service, you simply copy the
appropriate alternate switch file to nsswitch.conf . (See “The nsswitch.conf
Template Files” on page 17.) You can also change the sources of particular types of
network information used by the client by editing the appropriate lines of the
/etc/nsswitch.conf file. The syntax for doing this is described below, and
additional instructions are provided in Solaris Naming Setup and Configuration
Guide.

Format of the nsswitch.conf File
The nsswitch.conf file is essentially a list of 15 types of information and the
sources that getXXbyYY() routines search for that information. The 15 types of
information, not necessarily in this order, are:

� aliases

� bootparams

� ethers

� group

� hosts

� netgroup

12 Solaris Naming Administration Guide ♦ May 1999

� netmasks

� networks

� passwd (includes shadow information)

� protocols

� publickey

� rpc

� services

� automount

� sendmailvars

Table 2–1 provides a description of the kind of sources that can be listed in the
switch file for the information types above.

TABLE 2–1 Switch File Information Sources

Information Sources Description

files A file stored in the client’s /etc directory. For example, /etc/passwd

nisplus An NIS+ table. For example, the hosts table.

nis A NIS map. For example, the hosts map.

compat Compat can be used for password and group information to support old-style + or
- syntax in /etc/passwd , /etc/shadow , and /etc/group files.

dns Can be used to specify that host information be obtain from DNS.

Search Criteria
Single Source. If an information type has only one source, such as nisplus a routine
using the switch searches for the information in that source only. If it finds the
information, it returns a success status message. If it does not find the information,
it stops searching and returns a different status message. What the routine does with
the status message varies from routine to routine.

Multiple Sources. If a table has more than one source for a given information type, the
switch directs the routine to start searching for the information in the first source that
is listed. If it finds the information, it returns a success status message. If it does
not find the information in the first source, it tries the next source. The routine will

The Name Service Switch 13

search through all of the sources until it has found the information it needs, or it is
halted by encountering a return specification. If all of the listed sources are
searched without find the information, the routine stops searching and returns a
non-success status message.

Switch Status Messages
If a routine finds the information, it returns a success status message; if it does not
find the information it is looking for, it returns one of three unsuccessful status
messages, depending on the reason for not finding the information. Possible status
messages are listed in Table 2–2.

TABLE 2–2 Switch Search Status Messages

Status Message Meaning of Message

SUCCESS The requested entry was found in the specified source.

UNAVAIL The source is not responding or is unavailable. That is, the NIS+ table,
or NIS map, or /etc file could not be found or accessed.

NOTFOUND The source responded with "No such entry." In other words, the table,
map, or file was accessed but it did not contain the needed information.

TRYAGAIN The source is busy; it might respond next time. In other words, the
table, map, or file was found, but it could not respond to the query.

Switch Action Options
You can instruct the switch to respond to status messages with either of these two
actions shown in Table 2–3.

TABLE 2–3 Responses to Switch Status Messages

Action Meaning

return Stop looking for the information.

continue Try the next source, if there is one.

14 Solaris Naming Administration Guide ♦ May 1999

Default Search Criteria
The combination of nsswitch.conf file status message and action option
determine what the routine does at each step. This combination of status and action
is called the search criteria.

The switch’s default search criteria are the same for every source. Described in terms
of the status messages listed above, they are:

� SUCCESS=return . Stop looking for the information and proceed using the
information that has been found.

� UNAVAIL=continue . Go to the next nsswitch.conf file source and continue
searching. If this is the last (or only) source, return with a NOTFOUNDstatus.

� NOTFOUND=continue . Go to the next nsswitch.conf file source and continue
searching. If this is the last (or only) source, return with a NOTFOUNDstatus.

� TRYAGAIN=continue . Go to the next nsswitch.conf file source and continue
searching. If this is the last (or only) source, return with a NOTFOUNDstatus.

Because these are the default search criteria, they are assumed. That is, you do not
have to explicitly specify them in the switch file. You can change these default search
criteria by explicitly specifying some other criteria using the STATUS=action syntax
show above. For example, the default action for a NOTFOUNDcondition is to continue
the search to the next source. To specify that for a particular type of information,
such as networks , the search is to halt on a NOTFOUNDcondition, you would edit
the networks line of the switch file to read:

networks: nis [NOTFOUND=return] files

The networks: nis [NOTFOUND=return] files line specifies a nondefault
criterion for the NOTFOUNDstatus. (Nondefault criteria are delimited by square
brackets.)

In this example, the search routine behaves as follows:

� If the networks map is available and contains the needed information, the
routine returns with a SUCCESSstatus message.

� If the networks map is not available, the routine returns with an UNAVAIL status
message and by default continues on to search the appropriate /etc file.

� If the networks map is available and found, but it does not contain the needed
information, the routine returns with a NOTFOUND message. But instead of
continuing on to search the appropriate /etc file (the default behavior), the
routine stops searching.

� If the networks map is busy, the routine returns with an TRYAGAINstatus
message and by default continues on to search the appropriate /etc file.

The Name Service Switch 15

What if the Syntax is Wrong?
Client library routines contain compiled-in default entries that are used if an entry in
the nsswitch.conf file is either missing or syntactically incorrect. These entries are
the same as the switch file’s defaults.

The name service switch assumes that the spelling of table and source names is
correct. If you misspell a table or source name, the switch uses default values.

Auto_home and Auto_master
The switch search criteria for the auto_home and auto_master tables and maps is
combined into one category called automount .

Timezone and the Switch File
The timezone table does not use the switch, so it is not included in the switch file’s
list.

Comments in nsswitch.conf Files
Any nsswitch.conf file line beginning with a hash character (#) is interpreted as a
comment line and is ignored by routines that search the file.

When a hash character (#) is included in the middle of the line, characters to the left
of the hash mark (before the hash mark) are interpreted by routines that search the
nsswitch.conf file; characters to the right of the hash mark (after the hash mark)
are interpreted as comments and not acted upon.

TABLE 2–4 Switch File Comment Examples

Type of Line Example

Comment line (not interpreted). # hosts: nisplus [NOTFOUND=return] files

Fully interpreted line. hosts: nisplus [NOTFOUND=return] file

Partially interpreted line (the
files element not interpreted)

hosts: nisplus [NOTFOUND=return] # files

16 Solaris Naming Administration Guide ♦ May 1999

Keyserver and publickey Entry in the Switch
File
The keyserver reads the publickey entry in the name service switch configuration
file only when the keyserver is started. As a result, if you change the switch
configuration file, the keyserver does not become aware of changes to the
publickey entry until it is restarted.

The nsswitch.conf Template Files
Three nsswitch.conf template files are provided with the Solaris 2.6 release. Each
of them provides a different default set of primary and subsequent information
sources.

The three template files are:

� NIS+ template file. The nsswitch.nisplus configuration file specifies NIS+ as the
primary source for all information except passwd, group, automount, and aliases.
For those four files, the primary source is local /etc files and the secondary
source is an NIS+ table. The [NOTFOUND=return] search criterion instructs the
switch to stop searching the NIS+ tables if it receives a “No such entry” message
from them. It searches through local files only if the NIS+ server is unavailable.

� NIS template file. The nsswitch.nis configuration file is almost identical to the
NIS+ configuration file, except that it specifies NIS maps in place of NIS+ tables.
Because the search order for passwd and group is files nis , you don’t need to
place the + entry in the /etc/passwd and /etc/group files.

� Files template file. The nsswitch.files configuration file specifies local /etc
files as the only source of information for the workstation. There is no “files”
source for netgroup , so the client simply won’t use that entry in the switch file.

Copy the template file that most closely meets your requirements to
nsswitch.conf configuration file is nsswitch.conf and then modify
nsswitch.conf as needed. (See the switch chapter of Solaris Naming Setup and
Configuration Guide for a detailed description of this process.)

For example, to use the NIS+ template file, you would type the following command:

mymachine# cp nsswitch.nisplus nsswitch.conf

The Default Switch Template Files
Here are the three switch files supplied with Solaris 2.6 release:

The Name Service Switch 17

CODE EXAMPLE 2–1 NIS+ Switch File Template (nsswitch.nisplus)

‘#’‘# /etc/nsswitch.nisplus:’‘#’‘# An example file that could be copied over to /etc/
nsswitch.conf;’
it uses NIS+ (NIS Version 3) in conjunction with files.
#
"hosts:" and "services:" in this file are used only if the
/etc/netconfig file has a "-" for nametoaddr_libs of "inet"
transports.

the following two lines obviate the "+" entry in /etc/passwd
and /etc/group.
passwd: files nisplus
group: files nisplus
consult /etc "files" only if nisplus is down.
hosts: nisplus [NOTFOUND=return] files
Uncomment the following line, and comment out the above, to use
both DNS and NIS+. You must also set up the /etc/resolv.conf
file for DNS name server lookup. See resolv.conf(4).
hosts: nisplus dns [NOTFOUND=return] files
services: nisplus [NOTFOUND=return] files
networks: nisplus [NOTFOUND=return] files
protocols: nisplus [NOTFOUND=return] files
rpc: nisplus [NOTFOUND=return] files
ethers: nisplus [NOTFOUND=return] files
netmasks: nisplus [NOTFOUND=return] files
bootparams: nisplus [NOTFOUND=return] files
publickey: nisplus
netgroup: nisplus
automount: files nisplus
aliases: files nisplus
sendmailvars: files nisplus

CODE EXAMPLE 2–2 NIS Switch File Template

#
/etc/nsswitch.nis:
#
An example file that could be copied over to /etc/nsswitch.conf;
it uses NIS (YP) in conjunction with files.
#
"hosts:" and "services:" in this file are used only if the
/etc/netconfig file has a "-" for nametoaddr_libs of "inet"
transports.
#
the following two lines obviate the "+" entry in /etc/passwd
and /etc/group.
passwd: files nis
group: files nis
consult /etc "files" only if nis is down.
hosts: nis [NOTFOUND=return] files
networks: nis [NOTFOUND=return] files

(continued)

18 Solaris Naming Administration Guide ♦ May 1999

(Continuation)

protocols: nis [NOTFOUND=return] files
rpc: nis [NOTFOUND=return] files
ethers: nis [NOTFOUND=return] files
netmasks: nis [NOTFOUND=return] files
bootparams: nis [NOTFOUND=return] files
publickey: nis [NOTFOUND=return] files
netgroup: nis
automount: files nis
aliases: files nis
for efficient getservbyname() avoid nis
services: files nis
sendmailvars: files

CODE EXAMPLE 2–3 Files Switch File Template

#
/etc/nsswitch.files:
#
An example file that could be copied over to /etc/nsswitch.conf;
it does not use any naming service.
#
"hosts:" and "services:" in this file are used only if the
/etc/netconfig file has a "-" for nametoaddr_libs of "inet"
transports.
passwd: files
group: files
hosts: files
networks: files
protocols: files
rpc: files
ethers: files
netmasks: files
bootparams: files
publickey: files
At present there isn’t a ’files’ backend for netgroup;
the system will figure it out pretty quickly, and won’t use
netgroups at all.
netgroup: files
automount: files
aliases: files
services: files
sendmailvars: files

Default nsswitch.conf File
The default nsswitch.conf file that is installed when you install the Solaris
operating environment for the first time is determined by which name service you
select during the Solaris software installation process. When you chose a name

The Name Service Switch 19

service, the switch template file for that service is copied to create the new
nsswitch.conf file. For example, if you choose NIS+, the nsswitch.nisplus file
is copied to create a new nsswitch.conf file.

DNS and Internet Access
The nsswitch.conf file also controls DNS forwarding for clients as described in
the following subsections. DNS forwarding grants Internet access to clients.

Note - The NIS+ client must have a properly configured /etc/resolv.conf file
(as described in “DNS Clients and the Resolver” on page 477).

See the switch file chapter of Solaris Naming Setup and Configuration Guide for
step-by-step instructions on enabling DNS forwarding for NIS+ and NIS clients.

DNS Forwarding for NIS+ Clients
NIS+ clients do not have implicit DNS forwarding capabilities like NIS clients do.
Instead, they take advantage of the switch. To provide DNS forwarding capabilities
to an NIS+ client, change its hosts entry to:

hosts: nisplus dns [NOTFOUND=return] files

DNS Forwarding for NIS Clients
DNS forwarding is inherent in the NIS name service. The proper format for the hosts
line in a NIS-primary switch file to enable DNS forwarding is:

hosts: nis [NOTFOUND=return] files

Caution - If an NIS client is using the DNS forwarding capability of a
NIS-compatible NIS+ server, its nsswitch.conf file should nothave
hosts: nis dns files as the syntax for the hosts file. This is because DNS
forwarding automatically forwards host requests to DNS and this syntax would
cause the NIS+ server to forward unsuccessful requests to the DNS servers twice,
which would reduce performance. To take best advantage of DNS forwarding, use
the default syntax for the nsswitch.nis file.

20 Solaris Naming Administration Guide ♦ May 1999

Adding Compatibility With +/- Syntax
You can add to your nsswitch.conf file compatibility with the +/- syntax
sometimes used in /etc/passwd , /etc/shadow, and /etc/group files.

� NIS+. To provide +/- semantics with NIS+, change the passwd and groups
sources to compat and add a passwd_compat: nisplus entry to the
nsswitch.conf file after the passwd or group entry as shown below:

passwd: compat
passwd_compat: nisplus
group: compat
group_compat: nisplus

This specifies that client routines obtain their network information from /etc files
and NIS+ tables as indicated by the +/- entries in the files.

� NIS. To provide the same syntax as in the Sun Operating Environment 4.x release,
change the passwd and groups sources to compat .

passwd: compat
group: compat

This specifies that /etc files and NIS maps as indicated by the +/- entries in the
files.

Note - Users working on a client machine being served by an NIS+ server running
in NIS compatibility mode cannot run ypcat on the netgroup table. Doing so will
give you results as if the table were empty even if it has entries.

See the switch file chapter of Solaris Naming Setup and Configuration Guide for step
by step instructions on adding +/- semantics to an nsswitch.conf file.

The Switch File and Password
Information
For passwd information, files should always be the first source searched.

For example, in an NIS+ environment, the passwd line of the nsswitch.conf file
should look like this:

The Name Service Switch 21

passwd: files nisplus

In a NIS environment, the passwd line of the nsswitch.conf file should look like
this:

passwd: files nis

Caution - files should be the first source in the nsswitch.conf file for passwd
information. If files is not the first source, network security could be weakened
and users could encounter log in difficulty.

FNS and the Name Service Switch
See Chapter 20 and Chapter 21, for introductory information about the Federated
Naming Service.

FNS, the Solaris implementation of the XFN API, can also be used to specify which
name service a client is to query for naming information. The XFN API is more
general in both the X and Y dimensions than the update getXbyY() interfaces that
use the switch file. For example, it can be used to lookup information on both hosts
and users, from both NIS+ and NIS. An application can be a client of either
getXbyY() , or XFN, or both.

Maintaining Consistency Between FNS and the
Switch File
In order to ensure that changes made to namespace data through FNS are always
available to clients obtaining namespace information through the switch file, always
configure both the switch and FNS to use the same name service.

Namespace Updates
The support for data updates provided by the XFN API is superior to that of the
getXbyY() interfaces. Most namespaces are composed of data from multiple
sources. A groups namespace, for example, might contain information from both the
/etc/group file and the NIS+ group.org_dir object. But the switch file does not
provide enough information for an application update routine to identify the source
of some particular piece of group data or the source to update.

22 Solaris Naming Administration Guide ♦ May 1999

Because each FNS subordinate namespace comes entirely from a single name service,
updates are simple and straightforward because there is no confusion over which
name service the update applies to.

The Name Service Switch 23

24 Solaris Naming Administration Guide ♦ May 1999

PART II NIS+ Introduction and Overview

This part describes NIS+.

� Chapter 3

� Chapter 4

� Chapter 5

� Chapter 6

CHAPTER 3

Introduction to NIS+

This chapter provides an overview of the Network Information Service Plus (NIS+)

� “About NIS+” on page 27

� “What NIS+ Can Do for You” on page 28

� “How NIS+ Differs From NIS” on page 29

� “NIS+ Security” on page 32

� “NIS+ and the Name Service Switch” on page 33

� “Solaris 1.x Releases and NIS-Compatibility Mode” on page 33

� “NIS+ Administration Commands” on page 34

� “NIS+ API” on page 36

Directions for setting up NIS+ and DNS namespaces are contained in Solaris Naming
Setup and Configuration Guide. See Glossaryfor definitions of terms and acronyms
you don’t recognize.

About NIS+
NIS+ is a network name service similar to NIS but with more features. NIS+ is not
an extension of NIS. It is a new software program.

The NIS+ name service is designed to conform to the shape of the organization that
installs it, wrapping itself around the bulges and corners of almost any network
configuration.

NIS+ enables you to store information about workstation addresses, security
information, mail information, Ethernet interfaces, and network services in central

27

locations where all workstations on a network can have access to it. This
configuration of network information is referred to as the NIS+ namespace.

The NIS+ namespace is hierarchical, and is similar in structure to the UNIX directory
file system. The hierarchical structure allows an NIS+ namespace to be configured to
conform to the logical hierarchy of an organization. The namespace’s layout of
information is unrelated to its physical arrangement. Thus, an NIS+ namespace can be
divided into multiple domains that can be administered autonomously. Clients may
have access to information in other domains in addition to their own if they have the
appropriate permissions.

NIS+ uses a client-server model to store and have access to the information
contained in an NIS+ namespace. Each domain is supported by a set of servers. The
principal server is called the master server and the backup servers are called replicas.
The network information is stored in 16 standard NIS+ tables in an internal NIS+
database. Both master and replica servers run NIS+ server software and both
maintain copies of NIS+ tables. Changes made to the NIS+ data on the master server
are incrementally propagated automatically to the replicas.

NIS+ includes a sophisticated security system to protect the structure of the
namespace and its information. It uses authentication and authorization to verify
whether a client’s request for information should be fulfilled. Authentication
determines whether the information requester is a valid user on the network.
Authorization determines whether a particular user is allowed to have or modify the
information requested.

Solaris clients use the name service switch (/etc/nsswitch.conf file) to
determine from where a workstation will retrieve network information. Such
information may be stored in local /etc files, NIS, DNS, or NIS+. You can specify
different sources for different types of information in the name service switch.

What NIS+ Can Do for You
NIS+ has some major advantages over NIS:

� Secure data access

� Hierarchical and decentralized network administration

� Very large namespace administration

� Access to resources across domains

� Incremental updates

With the security system described in “NIS+ Security” on page 32, you can control a
particular user’s access to an individual entry in a particular table. This approach to
security helps to keep the system secure and administration tasks to be more broadly

28 Solaris Naming Administration Guide ♦ May 1999

distributed without risking damage to the entire NIS+ namespace or even to an
entire table.

The NIS+ hierarchical structure allows for multiple domains in one namespace.
Division into domains makes administration easier to manage. Individual domains
can be administered completely independently, thereby relieving the burden on
system administrators who would otherwise each be responsible for very large
namespaces. As mentioned above, the security system in combination with
decentralized network administration allows for a sharing of administrative work
load.

Even though domains may be administered independently, all clients can be granted
permission to access information across all domains in a namespace. Since a client
can only see the tables in its own domain, the client can only have access to tables in
other domains by explicitly addressing them.

Incremental updates mean faster updates of information in the namespace. Since
domains are administered independently, changes to master server tables only have
to be propagated to that master’s replicas and not to the entire namespace. Once
propagated, these updates are visible to the entire namespace immediately.

How NIS+ Differs From NIS
The Network Information Service Plus (NIS+) differs from the Network Information
Service (NIS) in several ways. NIS+ has many new features, and the terminology it
uses for concepts similar to NIS is different. Look in the Glossaryif you see a term
you don’t recognize. Table 3–1 gives an overview of the major differences between
NIS and NIS+.

TABLE 3–1 Differences Between NIS and NIS+

NIS NIS+

Flat domains—no hierarchy Hierarchical layout—data stored in different
levels in the namespace

Data stored in two column maps Data stored in multi-column tables

Uses no authentication Uses DES authentication

Introduction to NIS+ 29

TABLE 3–1 Differences Between NIS and NIS+ (continued)

NIS NIS+

Single choice of network information source Name service switch—lets client choose
information source: NIS, NIS+, DNS, or local
/etc files

Updates delayed for batch propagation Incremental updates propagated immediately

NIS+ was designed to replace NIS. NIS addresses the administration requirements of
client-server computing networks prevalent in the 1980s. At that time client-server
networks did not usually have more than a few hundred clients and a few
multipurpose servers. They were spread across only a few remote sites, and since
users were sophisticated and trusted, they did not require security.

However, client-server networks have grown tremendously since the mid-1980s.
They now range from 100-10,000 multi-vendor clients supported by 10-100
specialized servers located in sites throughout the world, and they are connected to
several “untrusted” public networks. In addition, the information client-server
networks store changes much more rapidly than it did during the time of NIS. The
size and complexity of these networks required new, autonomous administration
practices. NIS+ was designed to address these requirements.

The NIS namespace, being flat, centralizes administration. Because networks in the
1990s require scalability and decentralized administration, the NIS+ namespace was
designed with hierarchical domains, like those of DNS.

For example, Figure 3–1, shows a sample company with a parent domain named
doc , and two subdomains named sales and manf .

doc

sales manf
Figure 3–1 Example of Hierarchical Domains

This design enables NIS+ to be used in a range of networks, from small to very
large. It also allows the NIS+ service to adapt to the growth of an organization. For
example, if a corporation splits itself into two divisions, its NIS+ namespace could be
divided into two domains that could be administered autonomously. Just as the
Internet delegates administration of domains downward, NIS+ domains can be
administered more or less independently of each other.

Although NIS+ uses a domain hierarchy similar to that of DNS, an NIS+ domain is
much more than a DNS domain. A DNS domain only stores name and address
information about its clients. An NIS+ domain, on the other hand, is a collection of
information about the workstations, users, and network services in a portion of an
organization.

30 Solaris Naming Administration Guide ♦ May 1999

Although this division into domains makes administration more autonomous and
growth easier to manage, it does not make information harder to access. Clients have
the same access to information in other domains as they would have had under one
umbrella domain. A domain can even be administered from within another domain.

The principal NIS+ server is called the master server, and the backup servers are
called replicas. Both master and replica servers run NIS+ server software and both
maintain copies of NIS+ tables. Tables store information in NIS+ the way maps store
information in NIS. The principal server stores the original tables, and the backup
servers store copies.

However, NIS+ uses an updating model that is completely different from the one
used by NIS. Since at the time NIS was developed, the type of information it would
store changed infrequently, NIS was developed with an update model that focused on
stability. Its updates are handled manually and, in large organizations, can take more
than a day to propagate to all the replicas. Part of the reason for this is the need to
remake and propagate an entire map every time any information in the map changes.

NIS+, however, accepts incremental updates. Changes must still be made on the
master server, but once made they are automatically propagated to the replica
servers and immediately made available to the entire namespace. You don’t have to
“make” any maps or wait for propagation.

Details about NIS+ domain structure, servers, and clients, are provided in Chapter 4.

An NIS+ domain can be connected to the Internet through its NIS+ clients, using the
name service switch (see “NIS+ and the Name Service Switch” on page 33). The
client, if it is also a DNS client, can set up its switch configuration file to search for
information in either DNS zone files or NIS maps—in addition to NIS+ tables.

NIS+ stores information in tables instead of maps or zone files. NIS+ provides 16
types of predefined, or system, tables:

Hosts

Bootparams

Passwd

Cred

Group

Services

Protocols

RPC

 Auto_Home

Auto_Master

Netgroups

Mail_Aliases

 Timezone

 Networks

 Netmasks

 Ethers

Each table stores a different type of information. For instance, the hosts table stores
information about workstation addresses, while the passwd table stores information
about users of the network.

Introduction to NIS+ 31

NIS+ tables provide two major improvements over the maps used by NIS. First, you
can search an NIS+ table by any column, not just the first column (sometimes
referred to as the “key”). This eliminates the need for duplicate maps, such as the
hosts.byname and hosts.byaddr maps used by NIS. Second, you can access and
manipulate the information in NIS+ tables at three levels of granularity: the table
level, the entry level, and the column level. NIS+ tables—and the information stored
in them—are described in Chapter 5.

You can use NIS in conjunction with NIS+ under the following principles and
conditions:

� Servers within a domain. While you can have both NIS and NIS+ servers
operating in the same domain, doing so is not recommended for long periods. As
a general rule, using both services in the same domain should be limited to a
relatively short transition period from NIS to NIS+.

� Subdomains. If the master server of your root domain is running NIS+, you can
set up subdomains whose servers are all running NIS. (If your root domain master
server is running NIS, you cannot have subdomains.)

� Workstations within a domain.

� If a domain’s servers are running NIS+, individual workstations within that
domain can be set up to use either NIS+, NIS, or /etc files for their name
service information. In order for an NIS+ server to supply the needs of an NIS
client, the NIS+ server must be running in NIS-Compatibility mode.

� If a domain’s servers are running NIS, individual workstations within that
domain can be set up to use either NIS or /etc files for name services (they
cannot use NIS+).

The service a workstation uses for various name services is controlled by the
workstation’s nsswitch.conf file. This file is called the switch file. See Chapter 2
for further information.

NIS+ Security
NIS+ protects the structure of the namespace, and the information it stores, by the
complementary processes of authorization and authentication.

� Authorization. Every component in the namespace specifies the type of operation it
will accept and from whom. This is authorization.

� Authentication. NIS+ attempts to authenticate every request for access to the
namespace. Requests come from NIS+ principals. An NIS+ principal can be a
process, machine, root, or a user. Valid NIS+ principals possess an NIS+ credential.
NIS+ authenticates the originator of the request (principal) by checking the
principal’s credential.

32 Solaris Naming Administration Guide ♦ May 1999

If the principal possesses an authentic (valid) credential, and if the principal’s request
is one that the principal is authorized to perform, NIS+ carries out the request. If
either the credential is missing or invalid, or the request is not one the principal is
authorized to perform, NIS+ denies the request for access. An introductory
description of the entire NIS+ security system is provided in Chapter 6.

NIS+ and the Name Service Switch
NIS+ works in conjunction with a separate program called the name service switch.
The name service switch, sometimes referred to as “the switch,” enables Solaris 2.6
releasebased workstations to obtain their information from more than one name
service; specifically, from local or /etc files, NIS maps, DNS zone files, or NIS+
tables. The switch not only offers a choice of sources, but allows a workstation to
specify different sources for different types of information. A complete description of
the switch software and its associated files is provided in Chapter 2.

Solaris 1.x Releases and
NIS-Compatibility Mode
NIS+ can be used by workstations running NIS with Solaris 1x or 2x Release
software. In other words, machines within an NIS+ domain can have their
nsswitch.conf files set to nis rather than nisplus . To access NIS+ service on
machines running NIS, you must run the NIS+ servers in NIS-compatibility mode.

NIS-compatibility mode enables an NIS+ server running Solaris 2.6 release to answer
requests from NIS clients while continuing to answer requests from NIS+ clients.
NIS+ does this by providing two service interfaces. One responds to NIS+ client
requests, while the other responds to NIS client requests.

This mode does not require any additional setup or changes to NIS clients. In fact,
NIS clients are not even aware that the server that is responding isn’t an NIS
server—except that an NIS+ server running in NIS-compatibility mode does not
support the ypupdate and ypxfr protocols and thus it cannot be used as a replica
or master NIS server. For more information on NIS-compatibility mode, see NIS+
Transition Guide.

Two more differences need to be pointed out. First, instructions for setting up a
server in NIS-compatibility mode are slightly different than those used to set up a
standard NIS+ server. For details, see Solaris Naming Setup and Configuration Guide.
Second, NIS-compatibility mode has security implications for tables in the NIS+

Introduction to NIS+ 33

namespace. Since the NIS client software does not have the capability to provide the
credentials that NIS+ servers expect from NIS+ clients, all their requests end up
classified as unauthenticated. Therefore, to allow NIS clients to access information in
NIS+ tables, those tables must provide access rights to unauthenticated requests. This
is handled automatically by the utilities used to set up a server in NIS-compatibility
mode, as described in Part 2. However, to understand more about the authentication
process and NIS-compatibility mode, see Chapter 6.

NIS+ Administration Commands
NIS+ provides a full set of commands for administering a namespace. Table 3–2,
below, summarizes them.

TABLE 3–2 NIS+ Namespace Administration Commands

Command Description

nisaddcred Creates credentials for NIS+ principals and stores them in the
cred table.

nisaddent Adds information from /etc files or NIS maps into NIS+
tables.

nisauthconf Optionally configure Diffie-Hellman key length.

nisbackup Backs up NIS directories.

nis_cachemgr Starts the NIS+ cache manager on an NIS+ client.

niscat Displays the contents of NIS+ tables.

nis_checkpoint Forces service to checkpoint data that has been entered in the
log but not checkpointed to disk.

nischgrp Changes the group owner of an NIS+ object.

nischmod Changes an object’s access rights.

nischown Changes the owner of an NIS+ object.

nischttl Changes an NIS+ object’s time-to-live value.

34 Solaris Naming Administration Guide ♦ May 1999

TABLE 3–2 NIS+ Namespace Administration Commands (continued)

Command Description

nisclient Initializes NIS+ principals.

nisdefaults Lists an NIS+ object’s default values: domain name, group
name, workstation name, NIS+ principal name, access rights,
directory search path, and time-to-live

nisgrep Searches for entries in an NIS+ table.

nisgrpadm Creates or destroys an NIS+ group, or displays a list of its
members. Also adds members to a group, removes them, or
tests them for membership in the group.

nisinit Initializes an NIS+ client or server.

nisln Creates a symbolic link between two NIS+ tables.

nislog Displays the contents of NIS+ transaction log.

nisls Lists the contents of an NIS+ directory.

nismatch Searches for entries in an NIS+ table.

nismkdir Creates an NIS+ directory and specifies its master and replica
servers.

nispasswd Changes password information stored in the NIS+ passwd
table. (Rather than using nispasswd , you should use passwd
or passwd -r nisplus .)

nis_ping Forces a replica to update its data from the master server.

nispopulate Populates the NIS+ tables in a new NIS+ domain.

nisprefadm Specifies the order in which clients are to seek NIS+
information from NIS+ servers.

nisrestore Restores previously backed up NIS+ directories and can also be
used to quickly bring online new NIS+ replica servers.

nisrm Removes NIS+ objects (except directories) from the namespace.

Introduction to NIS+ 35

TABLE 3–2 NIS+ Namespace Administration Commands (continued)

Command Description

nisrmdir Removes NIS+ directories and replicas from the namespace.

nisserver Shell script used to set up a new NIS+ server.

nissetup Creates org_dir and groups_dir directories and a complete
set of (unpopulated) NIS+ tables for an NIS+ domain.

nisshowcache Lists the contents of the NIS+ shared cache maintained by the
NIS+ cache manager.

nisstat Reports statistics and other information about an NIS+ server.

nistbladm Creates or deletes NIS+ tables, and adds, modifies or deletes
entries in an NIS+ table.

nistest Reports the current state of the NIS+ namespace.

nisupdkeys Updates the public keys stored in an NIS+ object.

passwd Changes password information stored in the NIS+ Passwd
table. Also administers password aging and other
password-related parameters.

NIS+ API
The NIS+ application programmer’s interface (API) is a group of functions that can
be called by an application to access and modify NIS+ objects. The NIS+ API has 54
functions that fall into nine categories:

� Object manipulation functions (nis_names())

� Table access functions (nis_tables())

� Local name functions (nis_local_names())

� Group manipulation functions (nis_groups())

� Application subroutine functions (nis_subr())

� Miscellaneous functions (nis_misc())

36 Solaris Naming Administration Guide ♦ May 1999

� Database access functions (nis_db())

� Error message display functions (nis_error())

� Transaction log functions (nis_admin())

Introduction to NIS+ 37

38 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 4

The NIS+ Namespace

This chapter describes the structure of the NIS+ namespace, the servers that support
it, and the clients that use it.

� “NIS+ Files and Directories” on page 39

� “Structure of the NIS+ Namespace” on page 40

� “Directories” on page 42

� “Domains” on page 43

� “Servers” on page 44

� “NIS+ Clients and Principals” on page 47

� “Naming Conventions” on page 52

� “NIS+ Name Expansion” on page 57

NIS+ Files and Directories
Table 4–1 lists the UNIX directories used to store NIS+ files.

TABLE 4–1 Where NIS+ Files are Stored

Directory Where Contains

/usr/bin All machines NIS+ user commands

/usr/lib/nis All machines NIS+ administrator commands

39

TABLE 4–1 Where NIS+ Files are Stored (continued)

Directory Where Contains

/usr/sbin All machines NIS+ daemons

/usr/lib/ All machines NIS+ shared libraries

/var/nis/data NIS+ server Data files used by NIS+ server

/var/nis NIS+ server NIS+ working files

/var/nis NIS+ client machines Machine-specific data files used by NIS+

Caution - Do not rename the /var/nis or /var/nis/data directories or any of
the files in these directories that were created by nisinit or any of the other NIS+
setup procedures. In Solaris Release 2.4 and earlier versions, the /var/nis directory
contained two files named hostname.dict and hostname.log . It also contained a
subdirectory named /var/nis/ hostname. Starting with Solaris Release 2.5, the two
files were named trans.log and data.dict , and the subdirectory was named
/var/nis/data . The content of the files was also changed and they are not
backward compatible with Solaris Release 2.4 or earlier. Thus, if you rename either
the directories or the files to match the Solaris Release 2.4 patterns, the files will not
work with either the Solaris 2.4 Release or the current version of rpc.nisd .
Therefore, you should not rename either the directories or the files.

Note - With the Solaris 2.6 release, the NIS+ data dictionary
(/var/nis/data.dict) is now machine independent. This allows you to easily
change the name of an NIS+ server. You can also now use the NIS+ backup and
restore capabilities to transfer NIS+ data from one server to another. See .

Structure of the NIS+ Namespace
The NIS+ namespace is the arrangement of information stored by NIS+. The
namespace can be arranged in a variety of ways to suit the needs of an organization.
For example, if an organization had three divisions, its NIS+ namespace would likely
be divided into three parts, one for each division. Each part would store information
about the users, workstations, and network services in its division, but the parts

40 Solaris Naming Administration Guide ♦ May 1999

could easily communicate with each other. Such an arrangement would make
information easier for the users to access and for the administrators to maintain.

Although the arrangement of an NIS+ namespace can vary from site to site, all sites
use the same structural components: directories, tables, and groups. These
components are called NIS+ objects. NIS+ objects can be arranged into a hierarchy
that resembles a UNIX file system. For example, the illustration below shows, on the
left, a namespace that consists of three directory objects, three group objects, and
three table objects; on the right it shows a UNIX file system that consists of three
directories and three files:

directory
objects

doc.com.

files

NIS+ Namespace UNIX File System

/usr

/src/bin

table
object

group
object

Although an NIS+ namespace resembles a UNIX file system, it has five important
differences:

� Although both use directories, the other objects in an NIS+ namespace are tables
and groups, not files.

� The NIS+ namespace is administered only through NIS+ administration
commands or graphical user interfaces designed for that purpose, such as the
Solstice AdminSuite tools; it cannot be administered with standard UNIX file
system commands or GUIs.

� The names of UNIX file system components are separated by slashes (/usr/bin),
but the names of NIS+ namespace objects are separated by dots (doc.com.).

� The “root” of a UNIX file system is reached by stepping through directories from
right to left (/usr/src/file1) , while the root of the NIS+ namespace is reached
by stepping from left to right (sales.doc.com.).

� Because NIS+ object names are structured from left to right, a fully qualified name
always ends in a dot. Any NIS+ object ending in a dot is assumed to be a fully
qualified name. NIS+ object names that do not end in a dot are assumed to be
relative names.

The NIS+ Namespace 41

Directories
Directory objects are the skeleton of the namespace. When arranged into a tree- like
structure, they divide the namespace into separate parts. You may want to visualize
a directory hierarchy as an upside-down tree, with the root of the tree at the top and
the leaves toward the bottom. The topmost directory in a namespace is the root
directory. If a namespace is flat, it has only one directory, but that directory is
nevertheless the root directory. The directory objects beneath the root directory are
simply called “directories”:

Root directory

directories

A namespace can have several levels of directories:

directories

When identifying the relation of one directory to another, the directory beneath is
called the child directory and the directory above is called the parent directory.

Whereas UNIX directories are designed to hold UNIX files, NIS+ directories are
designed to hold NIS+ objects: other directories, tables and groups. Each NIS+
domain-level directory contains the following sub-directories:

� groups_dir . Stores NIS+ group information.

� org_dir . Stores NIS+ system tables.

� ctx_dir . This directory is only present if you are using FNS.

groups_dir. org_dir.

NIS+ tablesNIS+ groups

G
G

G

optional
ctx_dir
for FNS

doc.com.

sales.doc.com.

Technically, you can arrange directories, tables, and groups into any structure that
you like. However, NIS+ directories, tables, and groups in a namespace are normally

42 Solaris Naming Administration Guide ♦ May 1999

arranged into configurations called domains. Domains are designed to support
separate portions of the namespace. For instance, one domain may support the Sales
Division of a company, while another may support the Manufacturing Division.

Domains
An NIS+ domain consists of a directory object, its org_dir directory, its
groups_dir directory, and a set of NIS+ tables.

groups_dir org_dir

NIS+ tablesNIS+ groups

NIS+ domain

G
G

G

NIS+ domains are not tangible components of the namespace. They are simply a
convenient way to refer to sections of the namespace that are used to support
real-world organizations.

For example, suppose the DOC company has Sales and Manufacturing divisions. To
support those divisions, its NIS+ namespace would most likely be arranged into
three major directory groups, with a structure that looked like this:

sales.doc.com.

groups_dir org_dir

tablesgroups

doc.com.

groups_dir org_dir

tablesgroups

manf.doc.com.

groups_dir org_dir

tablesgroups

G
G

G

G
G

GG
G

G

Figure 4–1 Example NIS+ Directory Structure

Instead of referring to such a structure as three directories, six subdirectories, and
several additional objects, referring to it as three NIS+ domains is more convenient:

The NIS+ Namespace 43

doc.com.

sales.doc.com. manf.doc.com.

NIS+ Domains

Figure 4–2 Example NIS+ Domains

Servers
Every NIS+ domain is supported by a set of NIS+ servers. The servers store the
domain’s directories, groups, and tables, and answer requests for access from users,
administrators, and applications. Each domain is supported by only one set of
servers. However, a single set of servers can support more than one domain:

Domains Servers

Remember that a domain is not an object but only refers to a collection of objects.
Therefore, a server that supports a domain is not actually associated with the
domain, but with the domain’s main directory:

Domain

groups_dir org_dir

TablesGroups

Servers

G
G

G

This connection between the server and the directory object is established during the
process of setting up a domain. Although instructions are provided in Part 2, one
thing is important to mention now: when that connection is established, the directory
object stores the name and IP address of its server. This information is used by
clients to send requests for service, as described later in this section.

44 Solaris Naming Administration Guide ♦ May 1999

Any Solaris 2.6 release based workstation can be an NIS+ server. The software for
both NIS+ servers and clients is bundled together into the release. Therefore, any
workstation that has the Solaris Release 2 software installed can become a server or a
client, or both. What distinguishes a client from a server is the role it is playing. If a
workstation is providing NIS+ service, it is acting as an NIS+ server. If it is
requesting NIS+ service, it is acting as an NIS+ client.

Because of the need to service many client requests, a workstation that will act as an
NIS+ server might be configured with more computing power and more memory
than the average client. And, because it needs to store NIS+ data, it might also have
a larger disk. However, other than hardware to improve its performance, a server is
not inherently different from an NIS+ client.

Two types of servers support an NIS+ domain: a master and its replicas:

ServersDomain

Replica

Master

The master server of the root domain is called the root master server. A namespace has
only one root master server. The master servers of other domains are simply called
master servers. Likewise, there are root replica servers and regular replica servers.

Both master and replica servers store NIS+ tables and answer client requests. The
master, however, stores the master copy of a domain’s tables. The replicas store only
duplicates. The administrator loads information into the tables in the master server,
and the master server propagates it to the replica servers.

This arrangement has two benefits. First, it avoids conflicts between tables because
only one set of master tables exists; the tables stored by the replicas are only copies
of the masters. Second, it makes the NIS+ service much more available. If either the
master or a replica is down, another server can act as a backup and handle the
requests for service.

How Servers Propagate Changes
An NIS+ master server implements updates to its objects immediately; however, it
tries to “batch” several updates together before it propagates them to its replicas.
When a master server receives an update to an object, whether a directory, group,
link, or table, it waits about two minutes for any other updates that may arrive. Once
it is finished waiting, it stores the updates in two locations: on disk and in a
transaction log (it has already stored the updates in memory).

The transaction log is used by a master server to store changes to the namespace
until they can be propagated to replicas. A transaction log has two primary
components: updates and time stamps.

The NIS+ Namespace 45

upda upda upda upda upda upda upda upda

t1 t2

Transaction Log

time stamps

An update is an actual copy of a changed object. For instance, if a directory has been
changed, the update is a complete copy of the directory object. If a table entry has
been changed, the update is a copy of the actual table entry. The time stamp
indicates the time at which an update was made by the master server.

After recording the change in the transaction log, the master sends a message to its
replicas, telling them that it has updates to send them. Each replica replies with the
time stamp of the last update it received from the master. The master then sends
each replica the updates it has recorded in the log since the replica’s time stamp:

upd upd upd upd upd upd upd upd

t1 t2

Replica Master

t1

ping

sent to

When the master server updates all its replicas, it clears the transaction log. In some
cases, such as when a new replica is added to a domain, the master receives a time
stamp from a replica that is before its earliest time stamp still recorded in the
transaction log. If that happens, the master server performs a full resynchronization, or
resync. A resync downloads all the objects and information stored in the master
down to the replica. During a resync, both the master and replica are busy. The
replica cannot answer requests for information; the master can answer read requests
but cannot accept update requests. Both respond to requests with a
Server Busy - Try Again or similar message.

46 Solaris Naming Administration Guide ♦ May 1999

NIS+ Clients and Principals
NIS+ principals are the entities (clients) that submit requests for NIS+ services.

Principal
An NIS+ principal may be someone who is logged in to a client machine as a regular
user or someone who is logged in as superuser (root). In the first instance, the
request actually comes from the client user; in the second instance, the request comes
from the client workstation. Therefore, an NIS+ principal can be a client user or a
client workstation.

(An NIS+ principal can also be the entity that supplies an NIS+ service from an NIS+
server. Since all NIS+ servers are also NIS+ clients, much of this discussion also
applies to servers.)

Client
An NIS+ client is a workstation that has been set up to receive NIS+ service. Setting
up an NIS+ client consists of establishing security credentials, making it a member of
the proper NIS+ groups, verifying its home domain, verifying its switch
configuration file and, finally, running the NIS+ initialization script. (Complete
instructions are provided in Part 2.)

An NIS+ client can access any part of the namespace, subject to security constraints.
In other words, if it has been authenticated and has been granted the proper
permissions, it can access information or objects in any domain in the namespace.

Although a client can access the entire namespace, a client belongs to only one
domain, which is referred to as its home domain. A client’s home domain is usually
specified during installation, but it can be changed or specified later. All the
information about a client, such as its IP address and its credentials, is stored in the
NIS+ tables of its home domain.

There is a subtle difference between being an NIS+ client and being listed in an NIS+
table. Entering information about a workstation into an NIS+ table does not
automatically make that workstation an NIS+ client. It simply makes information
about that workstation available to all NIS+ clients. That workstation cannot request
NIS+ service unless it is actually set up as an NIS+ client.

Conversely, making a workstation an NIS+ client does not enter information about
that workstation into an NIS+ table. It simply allows that workstation to receive
NIS+ service. If information about that workstation is not explicitly entered into the
NIS+ tables by an administrator, other NIS+ clients will not be able to get it.

The NIS+ Namespace 47

When a client requests access to the namespace, it is actually requesting access to a
particular domain in the namespace. Therefore, it sends its request to the server that
supports the domain it is trying to access. Here is a simplified representation:

ServersDomains Clients

doc.com.

sales.doc.com.

When accessing objects in
the doc.com. domain,
the client is supported by
this server.

doc.com.

sales.doc.com.

When accessing
objects in the
sales.doc.com.

How does the client know which server that is? By trial and error. Beginning with its
home server, the client tries first one server, then another, until it finds the right one.
When a server cannot answer the client’s request, it sends the client information to
help locate the right server. Over time, the client builds up its own cache of
information and becomes more efficient at locating the right server. The next section
describes this process.

The Cold-Start File and Directory Cache
When a client is initialized, it is given a cold-start file. The cold-start file gives a client
a copy of a directory object that it can use as a starting point for contacting servers in
the namespace. The directory object contains the address, public keys, and other
information about the master and replica servers that support the directory.
Normally, the cold-start file contains the directory object of the client’s home domain.

A cold-start file is used only to initialize a client’s directory cache. The directory cache,
managed by an NIS+ facility called the cache manager, stores the directory objects that
enable a client to send its requests to the proper servers.

48 Solaris Naming Administration Guide ♦ May 1999

ServersDomains Clients

doc.com.

sales.doc.com.
 directory cache

RootMaster

SalesMaster

 cold-start

By storing a copy of the namespace’s directory objects in its directory cache, a client
can know which servers support which domains. (To view the contents of a client’s
cache, use the nisshowcache command, described in “The nisshowcache
Command ” on page 209.) Here is a simplified example:

Domain Name and Directory Name
are the same Supporting Server IP Address

doc.com. rootmaster 123.45.6.77

sales.doc.com. salesmaster 123.45.6.66

manf.doc.com. manfmaster 123.45.6.37

int.sales.doc.com. Intlsalesmaster 111.22.3.7

To keep these copies up-to-date, each directory object has a time-to-live (TTL) field. Its
default value is 12 hours. If a client looks in its directory cache for a directory object
and finds that it has not been updated in the last 12 hours, the cache manager
obtains a new copy of the object. You can change a directory object’s time-to-live
value with the nischttl command, as described in “The nischttl Command” on
page 215. However, keep in mind that the longer the time-to-live, the higher the
likelihood that the copy of the object will be out of date; and the shorter the time to
live, the greater the network traffic and server load.

How does the directory cache accumulate these directory objects? As mentioned
above, the cold-start file provides the first entry in the cache. Therefore, when the
client sends its first request, the request goes to the server specified by the cold-start
file. If the request is for access to the domain supported by that server, the server
answers the request.

The NIS+ Namespace 49

ServersDomains Clients

doc.com.

sales.doc.com.

 directory cache

RootMaster

doc.com

SalesMaster

If the request is for access to another domain (for example, sales.doc.com.), the
server tries to help the client locate the proper server. If the server has an entry for
that domain in its own directory cache, it sends a copy of the domain’s directory
object to the client. The client loads that information into its directory cache for
future reference and sends its request to that server.

ServersDomains Clients

doc.com.

sales.doc.com.

 directory cache

doc.com
sales.doc
.com

If the server does not
support the domain the client
is trying to access, it sends

RootMaster

SalesMaster

doc.com.

sales.doc.com.

RootMaster

SalesMaster

doc.com.
sales.doc

In the unlikely event that the server does not have a copy of the directory object the
client is trying to access, it sends the client a copy of the directory object for its own
home domain, which lists the address of the server’s parent. The client repeats the
process with the parent server, and keeps trying until it finds the proper server or
until it has tried all the servers in the namespace. What the client does after trying all
the servers in the domain is determined by the instructions in its name service
switch configuration file. See Chapter 2

Over time, the client accumulates in its cache a copy of all the directory objects in the
namespace and thus the IP addresses of the servers that support them. When it
needs to send a request for access to another domain, it can usually find the name of
its server in its directory cache and send the request directly to that server.

50 Solaris Naming Administration Guide ♦ May 1999

An NIS+ Server Is Also a Client
An NIS+ server is also an NIS+ client. In fact, before you can set up a workstation as
a server (as described in Part 2), you must initialize it as a client. The only exception
is the root master server, which has its own unique setup process.

This means that in addition to supporting a domain, a server also belongs to a domain.
In other words, by virtue of being a client, a server has a home domain. Its host
information is stored in the Hosts table of its home domain, and its DES credentials
are stored in the cred table of its home domain. Like other clients, it sends its
requests for service to the servers listed in its directory cache.

An important point to remember is that—except for the root domain—a server’s
home domain is the parent of the domain the server supports:

In other words, a server supports clients in one domain, but is a client of another
domain. A server cannot be a client of a domain that it supports, with the exception
of the root domain. Because they have no parent domain, the servers that support
the root domain belong to the root domain itself.

For example, consider the following namespace:

doc.com.

manf.doc.com .

small.sales. doc.com.big.sales. doc.com.

sales.doc.com .

SalesMaster ManfMaster

BigSalesMaster

RootMaster

SmallSalesMaster

The chart lists which domain each server supports and which domain it belongs to:

Server Supports Belongs to

RootMaster doc.com. doc.com.

SalesMaster sales.doc.com. doc.com.

IntlSalesMaster intl.sales.doc.com. sales.doc.com.

ManfMaster manf.doc.com. doc.com.

The NIS+ Namespace 51

Naming Conventions
Objects in an NIS+ namespace can be identified with two types of names:
partially-qualified and fully qualified. A partially qualified name, also called a simple
name, is simply the name of the object or any portion of the fully qualified name. If
during any administration operation you type the partially qualified name of an
object or principal, NIS+ will attempt to expand the name into its fully qualified
version. For details, see “NIS+ Name Expansion” on page 57.

A fully qualified name is the complete name of the object, including all the
information necessary to locate it in the namespace, such as its parent directory, if it
has one, and its complete domain name, including a trailing dot.

This varies among different types of objects, so the conventions for each type, as well
as for NIS+ principals, is described separately. This namespace will be used as an
example:

groups_dir org_dir

Principals

doc.com.

sales.doc.com .

hosts cred
admin

other

The fully qualified names for all the objects in this namespace, including NIS+
principals, are summarized in Figure 4–3.

52 Solaris Naming Administration Guide ♦ May 1999

Domain: sales.doc.com.

local domain

root domain

Table Object: hosts.org_dir.sales. doc.com.

table name

org_dir directory name

Group Object: admin.groups_dir.sales. doc.com.

group name

groups_dir directory

NIS+
Principal:

principal-name.sales. doc.com.

principal name

domain name

Directory
Object:

groups_dir.sales. doc.com.

directory name

domain name

domain name

domain name

Figure 4–3 Fully qualified Names of Namespace Components

NIS+ Domain Names
A fully qualified NIS+ domain name is formed from left to right, starting with the
local domain and ending with the root domain:

doc.com. (root domain)

sales.doc.com. (subdomain)

intl.sales.doc.com. (a third level subdomain)

The first line above shows the name of the root domain. The root domain must
always have at least two elements (labels) and must end in a dot. The last (right most)
label may be anything you want, but in order to maintain Internet compatibility, the
last element must be either an Internet organizational name (as shown in Table 4–2),
or a two or three character geographic identifier such as .jp . for Japan.

The NIS+ Namespace 53

TABLE 4–2 Internet Organizational Domains

Domain Purpose

com Commercial organizations

edu Educational institutions

gov Government institutions

mil Military groups

net Major network support centers

org Nonprofit organizations and others

int International organizations

The second and third lines above show the names of lower-level domains.

Directory Object Names
A directory’s simple name is simply the name of the directory object. Its fully
qualified name consists of its simple name plus the fully qualified name of its
domain (which always includes a trailing dot):

groups_dir (simple name)

groups_dir.manf.doc.com. (fully qualified name)

If you set up an unusual hierarchy in which several layers of directories do not form
a domain, be sure to include the names of the intermediate directories. For example:

lowest_dir.lower_dir.low_dir.mydomain.com.

The simple name is normally used from within the same domain, and the fully
qualified name is normally used from a remote domain. However, by specifying
search paths in a domain’s NIS_PATH environment variable, you can use the simple
name from remote domains (see “NIS+ Name Expansion” on page 57).

54 Solaris Naming Administration Guide ♦ May 1999

Tables and Group Names
Fully qualified table and group names are formed by starting with the object name
and appending the directory name, followed by the fully qualified domain name.
Remember that all system table objects are stored in an org_dir directory and all
group objects are stored in a groups_dir directory. (If you create your own NIS+
tables, you can store them anywhere you like.) Here are some examples of group and
table names:

admin.groups_dir.doc.com.
admin.groups_dir.doc.com.
admin.groups_dir.sales.doc.com.
admin.groups_dir.sales.doc.com.
hosts.org_dir.doc.com.
hosts.org_dir.doc.com.
hosts.org_dir.sales.doc.com.
hosts.org_dir.sales.doc.com.

Table Entry Names
To identify an entry in an NIS+ table, you need to identify the table object and the
entry within it. This type of name is called an indexed name. It has the following
syntax:

[column=value,column=value,...], tablename

Column is the name of the table column. Value is the actual value of that column.
Tablename is the fully qualified name of the table object. Here are a few examples of
entries in the hosts table:

[addr=129.44.2.1,name=pine],hosts.org_dir.sales.doc.com.
[addr=129.44.2.2,name=elm],hosts.org_dir.sales.doc.com.
[addr=129.44.2.3,name=oak],hosts.org_dir.sales.doc.com.

You can use as few column-value pairs inside the brackets as required to uniquely
identify the table entry.

Some NIS+ administrative commands accept variations on this syntax. For details,
see the nistbladm , nismatch , and nisgrep commands in Part 2.

The NIS+ Namespace 55

Host Names
Host names may contain up to 24 characters. Letters, numbers, the dash (-) and
underscore (_) characters are allowed in host names. Host names are not case
sensitive (that is, upper and lower case letters are treated as the same). The first
character of a host name must be a letter of the alphabet. Blank spaces are not
permitted in host names.

Note - Dots (.) are not permitted in host names. For example, a host name such as
myco.2 is not permitted. Dots are not allowed in host names even if they are
enclosed in quotes. For example, ‘myco.2’ is not permitted. Dots are only used as
part of a fully qualified host name to identify the domain components. For example,
myco-2.sales.doc.com is a correct fully qualified host name.

Domains and hosts should not have the same name. For example, if you have a sales
domain you should not have a machine named sales . Similarly, if you have a
machine named home, you do not want to create a domain named home. This
caution applies to subdomains, for example if you have a machine named west you
don’t want to create a sales.west.myco.com subdomain.

NIS+ Principal Names
NIS+ principal names are sometimes confused with Secure RPC netnames. Both
types of names are described in the security chapters of Part—2. However, one
difference is worth pointing out now because it can cause confusion: NIS+ principal
names always end in a dot and Secure RPC netnames never do:

TABLE 4–3 NIS+ Principal Names

olivia.sales.doc.com. NIS+ principal name

unix.olivia@sales.doc.com Secure RPC netname

Also, even though credentials for principals are stored in a cred table, neither the
name of the cred table nor the name of the org_dir directory is included in the
principal name.

56 Solaris Naming Administration Guide ♦ May 1999

Accepted Name Symbols
You can form namespace names from any printable character in the ISO Latin 1 set.
However, the names cannot start with these characters:
@ < > + []- / = . , : ;

To use a string, enclose it in double quotes. To use a quote sign in the name, quote
the sign too (for example, to use o’henry , type o’’’’’henry). To include white
space (as in John Smith), use double quotes within single quotes, like this:

‘’’John Smith’’‘

See “Host Names” on page 56 for restrictions that apply to host names.

NIS+ Name Expansion
Entering fully qualified names with your NIS+ commands can quickly become
tedious. To ease the task, NIS+ provides a name-expansion facility. When you enter a
partially qualified name, NIS+ attempts to find the object by looking for it under
different directories. It starts by looking in the default domain. This is the home
domain of the client from which you type the command. If it does not find the object
in the default domain, NIS+ searches through each of the default domain’s parent
directories in ascending order until it finds the object. It stops after reaching a name
with only two labels. Here are some examples (assume you are logged onto a client
that belongs to the software.big.sales.doc.com. domain).

mydir

hosts.org_dir hosts.org_dir Software.big.sales.doc.com.
hosts.org_dir.big.sales.doc.com.
hosts.org_dir.sales.doc.com.
hosts.org_dir.doc.com.

expands into

expands into

mydir.software.big.sales.doc.com.
mydir.big.sales.doc.com.
mydir.sales.doc.com.
mydir.doc.com.

NIS_PATH Environment Variable
You can change or augment the list of directories NIS+ searches through by changing
the value of the environment variable NIS_PATH. NIS_PATH accepts a list of
directory names separated by colons:

setenv NIS_PATH directory1: directory2: directory3 ...

or

The NIS+ Namespace 57

NIS_PATH=directory1: directory2: directory3 ...;export NIS_PATH

NIS+ searches through these directories from left to right. For example:

mydir mydir.sales.doc.com.

hosts.org_dir hosts.org_dir .sales.doc.com.

 NIS_PATH sales.doc.com.:manf.doc.com.:doc.com.
mydir.big.sales.doc.

expands into

expands into

mydir.manf.doc.com.
mydir.doc.com.

hosts.org_dir.manf.doc.com.
hosts.org_dir.doc.com.

Like $PATHand $MANPATH, the NIS_PATH variable accepts the special symbol, $.
You can append the $ symbol to a directory name or add it by itself. If you append it
to a directory name, NIS+ appends the default directory to that name. For example:

 NIS_PATH $:org_dir.$:groups_dir.$

sales.doc.com.:org_dir.sales.doc.com.:groups_dir.sales.doc.com.

If default
directory is:

NIS_PATH
is effectively:

sales.doc.com

manf.doc.com.

doc.com.

manf.doc.com.:org_dir.manf.doc.com.:groups_dir.manf.doc.com.

doc.com.:org_dir.doc.com.:groups_dir.doc.com.

mydir.big.sales.doc.

.

If you use the $ sign by itself (for example, org_dir.$:$), NIS+ performs the
standard name expansion described earlier: it starts looking in the default directory
and proceeds through the parent directories. In other words, the default value of
NIS_PATH is $,

Note - Keep in mind that additions and changes to your NIS_PATH may increase
the number of lookups that NIS+ has to perform and thus slow down performance.

58 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 5

NIS+ Tables and Information

This chapter describes the structure of NIS+ tables and provides a brief overview of
how they can be set up.

� “NIS+ Table Structure” on page 59

� “Ways to Set Up Tables” on page 64

NIS+ Table Structure
NIS+ stores a wide variety of network information in tables. NIS+ tables provide
several features not found in simple text files or maps. They have a column-entry
structure, they accept search paths, they can be linked together, and they can be set
up in several different ways. NIS+ provides 16 preconfigured system tables, and you
can also create your own tables. Table 5–1 lists the preconfigured NIS+ tables.

TABLE 5–1 NIS+ Tables

Table Information in the Table

hosts Network address and host name of every workstation in the domain

bootparams Location of the root, swap, and dump partition of every diskless client
in the domain

passwd Password information about every user in the domain.

cred Credentials for principals who belong to the domain

59

TABLE 5–1 NIS+ Tables (continued)

Table Information in the Table

group The group name, group password, group ID, and members of every
UNIX group in the domain

netgroup The netgroups to which workstations and users in the domain may
belong

mail_aliases Information about the mail aliases of users in the domain

timezone The time zone of every workstation in the domain

networks The networks in the domain and their canonical names

netmasks The networks in the domain and their associated netmasks

ethers The Ethernet address of every workstation in the domain

services The names of IP services used in the domain and their port numbers

protocols The list of IP protocols used in the domain

RPC The RPC program numbers for RPC services available in the domain

auto_home The location of all user’s home directories in the domain

auto_master Automounter map information

Because it contains only information related to NIS+ security, the Cred table, is
described in Chapter 7.

These tables store a wide variety of information, ranging from user names to Internet
services. Most of this information is generated during a setup or configuration
procedure. For instance, an entry in the passwd table is created when a user account
is set up. An entry in the hosts table is created when a workstation is added to the
network. And an entry in the networks table is created when a new network is set up.

Since this information is generated from such a wide field of operations, much of it is
beyond the scope of this manual. However, as a convenience, Appendix C,
summarizes the information contained in each column of the tables, providing
details only when necessary to keep things from getting confusing, such as when
distinguishing groups from NIS+ groups and netgroups. For thorough explanations
of the information, consult Solaris system and network administration manuals.

60 Solaris Naming Administration Guide ♦ May 1999

Note - You can create more automounter maps for a domain, but be sure to store
them as NIS+ tables and list them in the auto_master table. When creating additional
automount maps to supplement auto_master (which is created for you), the
column names must key and value . For more information about the automounter
consult books about the automounter or books that describe the NFS file system.

Note - As a naming service, NIS+ tables are designed to store references to objects,
not the objects themselves. For this reason, NIS+ does not support tables with large
entries. If a table contains excessively large entries, rpc.nisd may fail.

Columns and Entries
Although NIS+ tables store different types of information, they all have the same
underlying structure; they are each made up of rows and columns (the rows are
called “entries” or “entry objects”):

Column

Entry

A client can access information by a key, or by any column that is searchable. For
example, to find the network address of a workstation named baseball , a client
could look through the hostname column until it found baseball .

Hostname
Column

baseball

nose

grass

violin

It then would move along the baseball entry to find its network address:

NIS+ Tables and Information 61

Hostname
Column

baseball

nose

grass

Baseball Row

violin

129.44.1.2

Add ress
Column

Because a client can access table information at any level, NIS+ provides security
mechanisms for all three levels. For instance, an administrator could assign read
rights to everyone for a table at the object level, modify rights to the owner at the
column level, and modify rights to the group at the entry level. Details about table
security are provided in Chapter 10.

Search Paths
A table contains information only about its local domain. For instance, tables in the
doc.com. domain contain information only about the users, clients, and services of
the doc.com. domain. The tables in the sales.doc.com. domain store
information only about the users, clients, and services of the sales.doc.com.
domain. And so on.

If a client in one domain tries to find information that is stored in another domain, it
has to provide a fully qualified name. As described in “NIS+ Name Expansion” on
page 57 if the NIS_PATH environment variable is set up properly, the NIS+ service
will do this automatically.

Every NIS+ table can also specify a search path that a server will follow when looking
for information. The search path is an ordered list of NIS+ tables, separated by colons:

table: table: table...

The table names in the search path don’t have to be fully qualified; they can be
expanded just like names entered at the command line. When a server cannot find
information in its local table, it returns the table’s search path to the client. The client
uses that path to look for the information in every table named in the search path, in
order, until it finds the information or runs out of names.

Here is an example that demonstrates the benefit of search paths. Assume the
following domain hierarchy:

 doc.com.

 manf.doc.com. sales.doc.com.

The hosts tables of the lower two domains have the following contents:

62 Solaris Naming Administration Guide ♦ May 1999

TABLE 5–2 Example Hosts Table

sales.doc.com. manf.doc.com.

127.0.0.1 localhost 127.0.0.1 localhost

111.22.3.22 luna 123.45.6.1 sirius

111.22.3.24 phoebus 123.45.6.112 rigel

111.22.3.25 europa 123.45.6.90 antares

111.22.3.27 ganymede 123.45.6.101 polaris

111.22.3.28 mailhost 123.45.6.79 mailhost

Assume now that a user logged onto the luna machine in the sales.doc.com.
domain wants to log in remotely to another client. Without providing a fully
qualified name, that user can only remotely log on to five workstations: localhost ,
phoebus , europa , ganymede , and the mailhost .

Now assume that the search path of the hosts table in the sales.doc.com.
domain listed the hosts table from the manf.doc.com. domain:

hosts.org_dir.manf.doc.com.

Now a user in the sales.doc.com. domain can enter something like
rlogin sirius , and the NIS+ server will find it. It will first look for sirius in the
local domain, but when it does not find a match, it will look in the manf.doc.com.
domain. How does the client know how to find the manf.doc.com. domain? As
described in Chapter 4, the information is stored in its directory cache. If it is not
stored in its directory cache, the client will obtain the information by following the
process described in Chapter 4.

There is a slight drawback, though, to specifying a search path. If the user were to
enter an incorrect name, such as rlogin luba (rather than “luna”), the server
would need to look through three tables—instead of just one—before returning an
error message. If you set up search paths throughout the namespace, an operation
may end up searching through the tables in 10 domains instead of just 2 or 3.
Another drawback is a performance loss from having many clients contact more than
one set of servers when they need to access NIS+ tables.

You should also be aware that since “mailhost” is often used as an alias, when trying
to find information about a specific mailhost, you should use its fully qualified name

NIS+ Tables and Information 63

(for example, mailhost.sales.doc.com.), or NIS+ will return all the mailhosts it
finds in all the domains it searches through.

You can specify a table’s search path by using the −p option to the nistbladm
command, as described in “The nistbladm Command ” on page 220.

Ways to Set Up Tables
Setting up NIS+ tables involves three or four tasks:

1. Creating the org_dir directory

2. Creating the system tables

3. Creating non-system tables (optional)

4. Populating the tables with information

As described in Chapter 4, NIS+ system tables are stored under an org_dir
directory. So, before you can create any tables, you must create the org_dir
directory that will hold them. You can do this in three ways.

� Use the nisserver script. The nisserver script creates the appropriate
directories and a full set of system tables. Running the nisserver script is the
recommended method.

� Use the nismkdir command. The nismkdir command simply creates the
directory.

� Use the /usr/lib/nis/nissetup utility. The nissetup utility creates the
org_dir and groups_dir directories and a full set of system tables.

The nisserver script and the nissetup and nismkdir utilities are described in
Solaris Naming Setup and Configuration Guide. Additional information on the
nismkdir command can be found in “The nismkdir Command ” on page 199.

A benefit of the nissetup utility is its capability to assign the proper access rights
to the tables of a domain whose servers are running in NIS-compatibility mode.
When entered with the −Y flag, it assigns read permissions to the nobody class of the
objects it creates, allowing NIS clients, who are unauthenticated, to get information
from the domain’s NIS+ tables.

The 16 NIS+ system tables and the type of information they store are described in
Appendix C. To create them, you could use one of the three ways mentioned above.
The nistbladm utility also creates and modifies NIS+ tables. You could conceivably
create all the tables in a namespace with the nistbladm command, but you would
have to type much more and you would have to know the correct column names
and access rights. A much easier way is to use the nisserver script.

To create a non-system table—that is, a table that has not been preconfigured by
NIS+—use the nistbladm command. (Note that if you are creating additional

64 Solaris Naming Administration Guide ♦ May 1999

automount maps, the first column must be named key and the second column
named value .)

You can populate NIS+ tables in three ways: from NIS maps, from ASCII files (such
as /etc files), and manually.

If you are upgrading from the NIS service, you already have most of your network
information stored in NIS maps. You don’t have to re-enter this information manually
into NIS+ tables. You can transfer it automatically with the nispopulate script or
the nisaddent utility.

If you are not using another network information service, but maintain network data
in a set of /etc files, you don’t have to re-enter this information, either. You can
transfer it automatically, also using the nispopulate script or the nisaddent
utility.

If you are setting up a network for the first time, you may not have much network
information stored anywhere. In that case, you’ll need to first get the information and
then enter it manually into the NIS+ tables. You can do this with the nistbladm
command. You can also do it by entering all the information for a particular table into
an input file—which is essentially the same as an /etc file—and then transferring the
contents of the file with the nispopulate script or the nisaddent utility.

How Tables Are Updated
When a domain is set up, its servers receive their first versions of the domain’s NIS+
tables. These versions are stored on disk, but when a server begins operating, it loads
them into memory. When a server receives an update to a table, it immediately
updates its memory-based version of the table. When it receives a request for
information, it uses the memory-based copy for its reply.

Of course, the server also needs to store its updates on disk. Since updating
disk-based tables takes time, all NIS+ servers keep log files for their tables. The log
files are designed to temporarily store changes made to the table, until they can be
updated on disk. They use the table name as the prefix and append .log . For
example:

hosts.org_dir.log
bootparams.org_dir.log
password.org_dir.log

You should update disk-based copies of a table on a daily basis so that the log files
don’t grow too large and take up too much disk space. This process is called
checkpointing. To do this, use the nisping −C command.

NIS+ Tables and Information 65

66 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 6

Security Overview

This chapter describes the NIS+ security system and how it affects the entire NIS+
namespace.

� “Solaris Security—Overview” on page 67

� “NIS+ Security—Overview” on page 69

� “ NIS+ Authentication and Credentials—Introduction” on page 72

� “NIS+ Authorization and Access—Introduction ” on page 74

� “The NIS+ Administrator” on page 79

� “NIS+ Password, Credential, and Key Commands ” on page 79

Solaris Security—Overview
In essence, Solaris security is provided by gates that users must pass through in
order to enter the Solaris environment, and permission matrixes that determine what
they are able to do once inside. (See Figure 6–1 for a schematic representation of this
system.)

67

NIS+ Credential
(Secure RPC password)

Square boxes indicate
security gate or matrix

Login ID
Password

Login Gate Secure RPC Gate

Dialup Gate Root Gate

Root Privileges

NIS+ Matrix

User

User

Machine

File & Directory
Permissions

File and Directory Matrix

NIS+
objects

NIS+
services

File System

NIS+
Authorization

Outside
User via
Modem

Login ID
Dialup Password

Root
Password

Figure 6–1 Solaris Security Gates and Filters

As you can see in Figure 6–1, the overall system is composed of four gates and two
permission matrixes:

� Dialup gate. To access a given Solaris environment from the outside through a
modem and phone line, you must provide a valid Login ID and Dialup password.

� Login gate. To enter a given Solaris environment you must provide a valid login ID
and user password.

� File and Directory Matrix. Once you have gained access to a Solaris environment,
your ability to read, execute, modify, create, and destroy files and directories is
governed by the applicable permissions matrix.

� Root gate. To gain access to root privileges, you must provide a valid super user
(root) password.

� Secure RPC gate. In an NIS+ environment running at security level 2 (the default),
when you try to use NIS+ services and gain access to NIS+ objects (servers,
directories, tables, table entries, and so forth.) your identity is confirmed by NIS+
using the Secure RPC process.

Consult your Solaris documentation for detailed descriptions of the Dialup, Login,
and Root gates, and the File and Directory permissions matrix.

To enter the Secure RPC gate requires presentation of a Secure RPC password. (In
some contexts Secure RPC passwords have been referred to as network passwords.)
Your Secure RPC password and your login password normally are identical and
when that is the case you are passed through the gate automatically without
having to re-enter your password. (See “Secure RPC Password versus Login
Password Problem” on page 92 for information regarding cases where the two
passwords are not the same.)

68 Solaris Naming Administration Guide ♦ May 1999

A set of credentials are used to automatically pass your requests through the Secure
RPC gate. The process of generating, presenting, and validating your credentials is
called authentication because it confirms who you are and that you have a valid
Secure RPC password. This authentication process is automatically performed
every time you request an NIS+ service.

In an NIS+ environment running in NIS-compatibility mode (also known as
YP-compatibility mode), the protection provided by the Secure RPC gate is
significantly weakened because everyone has read rights for all NIS+ objects and
modify rights for those entries that apply to them regardless of whether or not
they have a valid credential (that is, regardless of whether or not the
authentication process has confirmed their identity and validated their Secure RPC
password). Since that allows anyone to have read rights for all NIS+ objects and
modify rights for those entries that apply to them, an NIS+ network running in
compatibility mode is less secure than one running in normal mode.

For details on how to create and administer NIS+ authentication and credentials,
see Chapter 7.

� NIS+ objects matrix. Once you have been properly authenticated to NIS+ your
ability to read, modify, create, and destroy NIS+ objects is governed by the
applicable permissions matrix. This process is called NIS+ authorization.

For details NIS+ permissions and authorization, see Chapter 10.

NIS+ Security—Overview
NIS+ security is an integral part of the NIS+ namespace. You cannot set up security
and the namespace independently. For this reason, instructions for setting up
security are woven through the steps used to set up the other components of the
namespace. Once an NIS+ security environment has been set up, you can add and
remove users, change permissions, reassign group members, and all other routine
administrative tasks needed to manage an evolving network.

The security features of NIS+ protect the information in the namespace, as well as
the structure of the namespace itself, from unauthorized access. Without these
security features, any NIS+ client could obtain and change information stored in the
namespace or even damage it.

NIS+ security does two things:

� Authentication. Authentication is used to identify NIS+ principals. Every time a
principal (user or machine) tries to access an NIS+ object, the user’s identity and
Secure RPC password is confirmed and validated.

� Authorization. Authorization is used to specify access rights. Every time NIS+
principals try to access NIS+ objects, they are placed in one of four authorization
classes (owner, group, world, nobody). The NIS+ security system allows NIS+

Security Overview 69

administrators to specify different read, modify, create, or destroy rights to NIS+
objects for each class. Thus, for example, a given class could be permitted to
modify a particular column in the passwd table but not read that column, or a
different class could be allowed to read some entries of a table but not others.

In essence, then, NIS+ security is a two-step process:

1. Authentication. NIS+ uses credentials to confirm that you are who you claim to be.

2. Authorization. Once your identity is established by the authentication process,
NIS+ determines your class. What you can do with a given NIS+ object or service
depends on which class you belong to. This is similar in concept to the standard
UNIX file and directory permissions system. (See “Authorization Classes” on
page 75 for more information on classes.)

This process, for example, prevents someone with root privileges on machine A from
using the su command to assume the identity of a second user and then accessing
NIS+ objects with the second user’s NIS+ access privileges.

Note, however, that NIS+ cannot prevent someone who knows another user’s login
password from assuming that other user’s identity and NIS+ access privileges. Nor
can NIS+ prevent a user with root privileges from assuming the identity of another
user who is logged in from the same machine.

Figure 6–2 details this process:

request and credentials
client server

Object

Client (principal)
requests access to an
NIS+ object.

1 The server authenticates
the client’s identity by
examining the client’s
credentials.

2 Clients that present a valid
credential are placed in the
world class. Clients without
a valid credential are placed
in the nobody class.

3

The server then examines
the object’s definition to
determine the clients class.

4

Figure 6–2 Summary of the NIS+ Security Process

NIS+ Principals
NIS+ principals are the entities (clients) that submit requests for NIS+ services. An
NIS+ principal may be someone who is logged in to a client machine as a regular
user, someone who is logged in as superuser, or any process that runs with
superuser permission on an NIS+ client machine. Thus, an NIS+ principal can be a
client user or a client workstation.

An NIS+ principal can also be the entity that supplies an NIS+ service from an NIS+
server. Since all NIS+ servers are also NIS+ clients, much of this discussion also
applies to servers.

70 Solaris Naming Administration Guide ♦ May 1999

NIS+ Security Levels
NIS+ servers operate at one of two security levels. These levels determine the type of
credential principals that must submit for their requests to be authenticated. NIS+ is
designed to run at the most secure level, which is security level 2. Level 0 is
provided only for testing, setup, and debugging purposes. These security levels are
summarized in Table 6–1.

TABLE 6–1 NIS+ Security Levels

Security Level Description

0 Security level 0 is designed for testing and setting up the initial NIS+
namespace. An NIS+ server running at security level 0 grants any NIS+
principal full access rights to all NIS+ objects in the domain. Level 0 is for
setup purposes only and should only be used by administrators for that
purpose. Level 0 should not be used on networks in normal operation by
regular users.

1 Security level 1 uses AUTH_SYS security. This level is not supported by
NIS+ and should not be used.

2 Security level 2 is the default. It is the highest level of security currently
provided by NIS+. It authenticates only requests that use DES credentials.
Requests with no credentials are assigned to the nobody class and have
whatever access rights that have been granted to that class. Requests that
use invalid DES credentials are retried. After repeated failure to obtain a
valid DES credential, requests with invalid credentials fail with an
authentication error. (A credential might be invalid for a variety of
reasons such as the principal making the request is not keylogged in on
that machine, the clocks are out of synch, there is a key mismatch, and so
forth.)

Security Levels and Password Commands
In Solaris releases 2.0 through 2.4, you used the nispasswd command to change
your password. However, nispasswd could not function without credentials. (In
other words, it could not function under security level 0 unless there were
credentials existing from some previous higher level.) Starting with Solaris Release
2.5, the passwd command should now be used to change your own password
regardless of security level or credential status.

Security Overview 71

NIS+ Authentication and
Credentials—Introduction
The purpose of NIS+ credentials is to authenticate (confirm) the identity of each
principal requesting an NIS+ service or access to an NIS+ object. In essence, the NIS+
credential/authorization process is an implementation of the Secure RPC system.

The credential/authentication system prevents someone from assuming some other
user’s identity. That is, it prevents someone with root privileges on one machine from
using the su command to assume the identity of a second user who is not logged in
and then accessing NIS+ objects with the second user’s NIS+ access privileges.

Once a server authenticates a principal, the principal is placed in one of four
authorization classes. The server then checks the NIS+ object that the principal wants
to access to see what activities that class of principal is authorized to perform. (See
“NIS+ Authorization and Access—Introduction ” on page 74 for further information
on authorization.)

User and Machine Credentials
There are two basic types of principal, users and machines, and thus two different
types of credentials:

� User credentials. When someone is logged in to an NIS+ client as a regular user,
requests for NIS+ services include that person’s user credentials.

� Machine credentials. When a user is logged in to an NIS+ client as superuser,
request for services use the client workstation’s credentials.

DES versus LOCAL Credentials
NIS+ principals can have two types of credential: DES and LOCAL.

72 Solaris Naming Administration Guide ♦ May 1999

DES Credentials

Note - DES credentials are only one method of achieving authentication. In the
future, other methods may be available. Thus, do not equate DES credentials with
NIS+ credentials.

In this document, the term DES credentials is used generically to denote a
Diffie-Hellman key based authentication, regardless of key length. The system allows
you to specify the key length from a pre-determined set. Use nisauthconf (1M) to
set or display the Diffie-Hellman key length.

DES (Data Encryption Standard) credentials are the type of credential that provide
secure authentication. When this guide refers to NIS+ checking a credential to
authenticate an NIS+ principal, it is the DES credential that NIS+ is validating.

Each time a principal requests an NIS+ service or access to an NIS+ object, the
software uses the credential information stored for that principal to generate a
credential for that principal. DES credentials are generated from information created
for each principal by an NIS+ administrator, as explained in Chapter 7.

� When the validity of a principal’s DES credential is confirmed by NIS+, that
principal is authenticated.

� A principal must be authenticated in order to be placed in the owner, group, or
world authorization classes. In other words, you must have a valid DES credential
in order to be placed in one of those classes. (Principals who do not have a valid
DES credential are automatically placed in the nobody class.)

� DES credential information is always stored in the cred table of the principal’s
home domain, regardless of whether that principal is a client user or a client
workstation.

LOCAL Credentials
LOCAL credentials are simply a map between a user’s User ID number and NIS+
principal name which includes their home domain name. When users log in, the
system looks up their LOCAL credential, which identifies their home domain where
their DES credential is stored. The system uses that information to get the user’s DES
credential information.

When users log in to a remote domain, those requests use their LOCAL credential
which points back to their home domain; NIS+ then queries the user’s home domain
for that user’s DES credential information. This allows a user to be authenticated in a
remote domain even though the user’s DES credential information is not stored in
that domain.

Security Overview 73

Other Domain:
LOCAL

Home Domain:
LOCAL
DES

Client User Credentials

Figure 6–3 Credentials and Domains

LOCAL credential information can be stored in any domain. In fact, in order to log
into a remote domain and be authenticated, a client user must have a LOCAL
credential in the cred table of the remote domain. If a user does not have a LOCAL
credential in a remote domain the user is trying to access, NIS+ will be unable to
locate the user’s home domain to obtain the user’s DES credential. In such a case the
user would not be authenticated and would be placed in the nobody class.

User Types and Credential Types
A user can have both types of credentials, but a machine can only have DES
credentials.

Root cannot have NIS+ access, as root, to other machines because the root UID of
every machine is always zero. If root (UID=0) of machine A tried to access machine
B as root, that would conflict with machine B’s already existing root (UID=0). Thus, a
LOCAL credential doesn’t make sense for a client workstation; so it is allowed only
for a client user.

TABLE 6–2 Types of Credentials

Type of Credential Client User Client Workstation

DES Yes Yes

LOCAL Yes No

NIS+ Authorization and
Access—Introduction
The basic purpose of NIS+ authorization is to specify the access rights that each
NIS+ principal has for each NIS+ object and service.

74 Solaris Naming Administration Guide ♦ May 1999

Once the principal making an NIS+ request is authenticated, NIS+ places them in an
authorization class. The access rights (permissions) that specify which activities a
principal may do with a given NIS+ object are assigned on a class basis. In other
words, one authorization class may have certain access rights while a different class
has different rights.

� Authorization classes. There are four authorization classes: owner, group, world,
and nobody. (See “Authorization Classes” on page 75 below for details.)

� Access rights. There are four types of access rights (permissions): create, destroy,
modify, and read. (See “ NIS+ Access Rights” on page 78 for details.)

Authorization Classes
NIS+ objects do not grant access rights directly to NIS+ principals. Instead, they
grant access rights to four classes of principal:

� Owner. The principal who happens to be the object’s owner gets the rights granted
to the owner class.

� Group. Each NIS+ object has one group associated with it. The members of an
object’s group are specified by the NIS+ administrator. The principals who belong
to the object’s group class get the rights granted to the group class. (In this
context, group refers to NIS+ groups, not UNIX or net groups.)

� World. The world class encompasses all NIS+ principals that a server has been able
to authenticate. (That is, everyone who has been authenticated but who is not in
either the owner or group classes.)

� Nobody. Everyone belongs to the nobody class even those who are not
authenticated.

Owner Group World Nobody

Figure 6–4 Authorization Classes

Security Overview 75

For any NIS+ request, the system determines which class the requesting principal
belongs to and the principal then can use whatever access rights belonging to that
class.

An object can grant any combination of access rights to each of these classes.
Normally, however, a higher class is assigned the same rights as all the lower classes,
plus possible additional rights.

For instance, an object could grant read access to the nobody and world classes; both
read and modify access to the group class; and read, modify, create, and destroy
access to the owner class.

The four classes are described in detail below.

The Owner Class
The owner is a single NIS+ principal.

A principal making a request for access to an NIS+ object must be authenticated
(present a valid DES credential) before being granted owner access rights.

By default, an object’s owner is the principal that created the object. However, an
object’s owner can cede ownership to another principal in two ways:

� One way is for the principal to specify a different owner at the time the object is
created (see “Specifying Access Rights in Commands” on page 137).

� A second way is for the principal to change the ownership of the object after it is
created (see “Changing Ownership of Objects and Entries” on page 149).

Once a principal gives up ownership, that principal gives up all owner’s access
rights to the object and keeps only the rights the object assigns to either the group,
the world, or nobody.

The Group Class
The object’s group is a single NIS+ group. (In this context, group refers to NIS+
groups, not UNIX or net groups.)

A principal making a request for access to an NIS+ object must be authenticated
(present a valid DES credential) and belong to the group before being granted group
access rights.

An NIS+ group is a collection of NIS+ principals, grouped together as a convenience
for providing access to the namespace. The access rights granted to an NIS+ group
apply to all the principals that are members of that group. (An object’s owner,
however, does not need to belong to the object’s group.)

When an object is created it may be assigned a default group. A nondefault group
can be specified for an object when it is created or later. An object’s group may be
changed at any time.

76 Solaris Naming Administration Guide ♦ May 1999

Note - Information about NIS+ groups is not stored in the NIS+ group table. The
group table stores information about UNIX groups. Information about NIS+ groups
is stored in the appropriate groups_dir directory object.

Information about NIS+ groups is stored in NIS+ group objects, under the
groups_dir subdirectory of every NIS+ domain:

groups_dir.doc.com.

org_dir.doc.com.

doc.com.

group group
group

group
group

ctx_dir

For xfn

Figure 6–5 NIS+ Directory Structure

Instructions for administering NIS+ groups are provided in Chapter 12.

The World Class
The world class contains all NIS+ principals that are authenticated by NIS+. In other
words, the world class includes everyone in the owner and group class, plus
everyone else who presents a valid DES credential.

Access rights granted to the world class apply to all authenticated principals.

The Nobody Class
The nobody class is composed of anyone who is not properly authenticated. In other
words, the nobody class includes everyone who does not present a valid DES
credential.

Authorization Classes and the NIS+ Object Hierarchy
There is a hierarchy of NIS+ objects and authorization classes that can apply
independently to each level. The standard default NIS+ directory hierarchy is:

� Directory level. In each NIS+ domain there are two NIS+ directory objects:
groups_dir and org_dir . Each groups_dir directory object contains various
groups. Each org_dir directory object contains various tables.

� Group level or table level. Groups contain individual entries and possibly other
groups. Tables contain both columns and individual entries.

Security Overview 77

� Column level. A given table will have one or more columns.

� Entry (row) level. A given group or table will have one or more entries.

The four authorization classes apply at each level. Thus, a directory object will have
its own owner and group. The individual tables within a directory object will have
their own individual owners and groups which may be different than the owner and
group of the directory object. Within a table, an entry (row) may have its own
individual owner or group which may be different than the owner and group of the
table as a whole or the directory object as a whole. Within a table, individual
columns have the same owner and group as the table as a whole.

NIS+ Access Rights
NIS+ objects specify their access rights as part of their object definitions. (You can
examine these by using the niscat −o command, described on page 172.)

NIS+ objects specify access rights for NIS+ principals in the same way that UNIX
files specify permissions for UNIX users. Access rights specify the types of
operations that NIS+ principals are allowed to perform on NIS+ objects.

NIS+ operations vary among different types of objects, but they all fall into one of
the four access rights categories: read, modify, create, and destroy.

� Read A principal with read rights to an object can view the contents of that object.

� Modify. A principal with modify rights to an object can change the contents of that
object.

� Destroy. A principal with destroy rights to an object can destroy or delete the
object.

� Create. A principal with create rights to a higher level object can create new objects
within that level. In other words, if you have create rights to an NIS+ directory
object, you can create new tables within that directory. If you have create rights to
an NIS+ table, you can create new columns and entries within that table.

Every communication from an NIS+ client to an NIS+ server is, in effect, a request to
perform one of these operations on a specific NIS+ object. For instance, when an
NIS+ principal requests the IP address of another workstation, it is effectively
requesting read access to the hosts table object, which stores that type of information.
When a principal asks the server to add a directory to the NIS+ namespace, it is
actually requesting modify access to the directory’s parent object.

Keep in mind that these rights logically evolve down from directory to table to table
column and entry levels. For example, to create a new table, you must have create
rights for the NIS+ directory object where the table will be stored. When you create
that table, you become its default owner. As owner, you can assign yourself create
rights to the table which allows you to create new entries in the table. If you create
new entries in a table, you become the default owner of those entries. As table
owner, you can also grant table-level create rights to others. For example, you can

78 Solaris Naming Administration Guide ♦ May 1999

give your table’s group class table-level create rights. In that case, any member of the
table’s group can create new entries in the table. The individual member of the
group who creates a new table entry becomes the default owner of that entry.

The NIS+ Administrator
An NIS+ administrator is anyone who has administrative rights over an NIS+ object.
For the purpose of this discussion, administrative rights are defined as create,
destroy, and for some objects, modify rights. (See “ NIS+ Access Rights” on page 78
for a description of NIS+ access rights.)

Whoever creates an NIS+ object sets the initial access rights to that object. If the
creator restricts administrative rights to the object’s owner (initially the creator), than
only the owner has administrative power over that object. On the other hand, if the
creator grants administrative rights to the object’s group, then everyone in that group
has administrative power over that object.

Thus, who ever has administrative rights over an object is considered to be an NIS+
administrator for that object.

In other words, the NIS+ software does not enforce any requirement that there be a
single NIS+ administrator.

Theoretically, you could grant administrative rights to the world class, or even the
nobody class. The software allows you to do that. But granting administrative rights
beyond the group class effectively nullifies NIS+ security. Thus, if you grant
administrative rights to either the World or the nobody class you are, in effect,
defeating the purpose of NIS+ security.

NIS+ Password, Credential, and Key
Commands
Use the following commands to administer passwords, credentials, and keys (see the
appropriate man pages for a full description of each command):

� chkey . Changes a principal’s Secure RPC key pair. Do not use chkey unless
necessary, use passwd instead. See “Changing Keys for an NIS+ Principal” on
page 109 for more information.

� keylogin . Decrypts and stores a principal’s secret key with the keyserv .

� keylogout . Deletes stored secret key from keyserv .

Security Overview 79

� keyserv . Enables the server for storing private encryption keys. See “Keylogin”
on page 108 for more information.

� newkey . Creates a new key pair in public-key database.

� nisaddcred . Creates credentials for NIS+ principals. See “Creating Credential
Information” on page 95 and “Administering NIS+ Credential Information” on
page 104 for more information.

� nisauthconf . Display or set the Diffie-Hellman key length.

� nisupdkeys . Updates public keys in directory objects. See “Updating Public
Keys” on page 114 for more information.

� passwd . Changes and administers principal’s password. See Chapter 11 for more
information.

80 Solaris Naming Administration Guide ♦ May 1999

PART III Administering NIS+

This part of the manual describes how to administer an NIS+ namespace.

� Chapter 7

� Chapter 8

� Chapter 9

� Chapter 10

� Chapter 11

� Chapter 12

� Chapter 13

� Chapter 14

� Chapter 15

� Chapter 16

� Chapter 17

CHAPTER 7

Administering NIS+ Credentials

This chapter describes NIS+ credentials and how to administer them.

� “How Credentials Work” on page 84

� “Credential versus Credential Information” on page 85

� “Authentication Components” on page 85

� “How Principals are Authenticated” on page 85

� “The DES Credential in Detail” on page 89

� “Where Credential-Related Information Is Stored” on page 93

� “The cred Table in Detail” on page 94

� “Creating Credential Information” on page 95

� “The nisaddcred Command” on page 96

� “How nisaddcred Creates Credential Information” on page 97

� “The Secure RPC Netname and NIS+ Principal Name” on page 98

� “Creating Credential Information for the Administrator” on page 99

� “Creating Credential Information for NIS+ Principals” on page 100

� “Updating Your Own Credential Information” on page 104

� “Removing Credential Information” on page 104

Note - Some NIS+ security tasks can be performed more easily with Solstice
AdminSuite tools if you have them available.

83

NIS+ Credentials
NIS+ credentials are used to identify NIS+ users. This chapter assumes that you have
an adequate understanding of the NIS+ security system in general, and in particular
of the role that credentials play in that system (see , for this information.)

For a complete description of NIS+ credential-related commands and their syntax
and options, see the NIS+ man pages.

Note - The description of DES credentials in this chapter is applicable to 192–bit
Diffie-Hellman DES credentials. While similar, authentication using other key lengths
differs in details. When the command line interface is used to manipulate the keys,
the differences are transparent to both the user and the system administrator. Use
nisauthconf (1M) to display or set the prescribed key lengths.

How Credentials Work
Note - Some NIS+ security tasks can be performed more easily with Solstice
AdminSuite tools, if you have them available.

The credential/authentication system prevents someone from assuming some other
user’s identity. That is, it prevents someone with root privileges on one machine
from using the su command to assume the identity of a second user who is either
not logged in at all or logged in on another machine and then accessing NIS+ objects
with the second user’s NIS+ access privileges.

Caution - NIS+ cannot prevent someone who knows another user’s login password
from assuming that other user’s identity and the other user’s NIS+ access privileges.
Nor can NIS+ prevent a user with root privileges from assuming the identity of
another user who is currently logged in on the same machine.

See Chapter 6, for a description of how NIS+ credentials and authentication work
with authorization and access rights to provide security for the NIS+ namespace.

84 Solaris Naming Administration Guide ♦ May 1999

Credential versus Credential Information
To understand how DES credentials are created and how they work, you need to
distinguish between the credential itself and the information that is used to create
and verify it.

� Credential information: The data that is used to generate a DES credential and by
the server to verify that credential.

� DES credential: The bundle of numbers that is sent by the principal to the server to
authenticate the principal. A principal’s credential is generated and verified each
time the principal makes an NIS+ request. See “The DES Credential in Detail” on
page 89 for a detailed description of the DES credential.

Authentication Components
In order for the credential/authentication process to work the following components
must be in place:

� Principal’s DES credential information. This information is initially created by an
NIS+ administrator for each principal. It is stored in the cred table of the
principal’s home domain. A principal’s DES credential information consists of:

� Principal name. This would be a user’s fully qualified login ID or a machine’s
fully qualified host name.

� Principal’s Secure RPC netname. Each principal has a unique Secure RPC
netname. (See “DES Credential Secure RPC Netname” on page 89 for more
information on Secure RPC netnames.)

� Principal’s public key.
� Principal’s encrypted private key.

� Principal’s LOCAL credential.

� Server’s public keys. Each directory object stores copies of the public keys of all the
servers in that domain. Note that each server’s DES credentials are also stored in
the cred table.

� Keyserver copy of principal’s private key. The keyserver has a copy of the private key
of the principal that is currently logged in (user or machine).

How Principals are Authenticated
There are three phases to the authorization process:

� Preparation phase. This consists of the setup work performed by an NIS+
administrator prior to the user logging in; for example, creating credential
information for the user.

Administering NIS+ Credentials 85

� Login phase. This consists of the actions taken by the system when a user logs in.

� Request phase. This consists of the actions taken by the software when an NIS+
principal makes a request for an NIS+ service or access to an NIS+ object.

These three phases are described in detail in the following subsections.

Credentials Preparation Phase
The easiest way for an NIS+ administrator to create credential information for users
is to use the nisclient script as described in Solaris Naming Setup and
Configuration Guide. This section describes how to create client information using the
NIS+ command set.

Prior to an NIS+ principal logging in, an NIS+ administrator must create DES
credential information for that principal (user or machine). The administrator must:

� Create a public key and an encrypted private key for each principal. These keys
are stored in the principal’s home domain cred table. This can be done with the
nisaddcred command as described in “Creating Credential Information for NIS+
Principals” on page 100.

� Create server public keys. (See “Updating Public Keys” on page 114.)

Login Phase—Detailed Description
When a principal logs into the system the following steps are automatically
performed:

1. The keylogin program is run for the principal. The keylogin program gets the
principal’s encrypted private key from the cred table and decrypts it using the
principal’s login password.

Note - When a principal’s login password is different from his or her Secure RPC
password, keylogin cannot decrypt it and the user starts getting “cannot decrypt”
errors or the command fails without a message. For a discussion of this problem, see
“Secure RPC Password versus Login Password Problem” on page 92.

2. The principal’s decrypted private key is passed to the keyserver which stores it
for use during the request phase.

86 Solaris Naming Administration Guide ♦ May 1999

Note - The decrypted private key remains stored for use by the keyserver until the
user does an explicit keylogout . If the user simply logs out (or goes home for the
day without logging out), the decrypted private key remains stored in the server. If
someone with root privileges on a user’s machine switched to the user’s login ID,
that person would then have use of the user’s decrypted private key and could
access NIS+ objects using the user’s access authorization. Thus, for added security,
users should be cautioned to perform an explicit keylogout when they cease work.
If they also log out of the system, all they need do is log back in when they return. If
they do not explicitly log out, they will have to perform an explicit keylogin when
they return to work.

Request Phase—Detailed Description
Every time an NIS+ principal requests access to an NIS+ object, the NIS+ software
performs a multistage process to authenticate that principal:

1. NIS+ checks the cred table of the object’s domain. If:

� The principal has LOCAL credential information, NIS+ uses the domain
information contained in the LOCAL credential to find the principal’s home
domain cred table where it obtains the information it needs.

� The principal has no credential information, the rest of the process is aborted
and the principal is given the authorization access class of nobody.

2. NIS+ gets the user’s DES credential from the cred table of the user’s home
domain. The encrypted private key is decrypted with the user’s password and
saved by the keyserver.

3. NIS+ obtains the server’s public key from the NIS+ directory object.

4. The keyserver takes the principal’s decrypted private key and the public key of
the object’s server (the server where the object is stored) and uses them to create a
common key.

5. The common key is then used to generate an encrypted DES key. To do this,
Secure RPC generates a random number which is then encrypted using the
common key. For this reason, the DES key is sometimes referred to as the random
key or the random DES key.

6. NIS+ then takes the current time of the principal’s server and creates a time
stamp that is encrypted using the DES key.

7. NIS+ then creates a 15-second window, which is encrypted with the DES key. This
window is the maximum amount of time that is permitted between the time stamp
and the server’s internal clock.

8. NIS+ then forms the principal’s DES credential, which is composed of the
following:

Administering NIS+ Credentials 87

� The principal’s Secure RPC netname (unix .identifier@domain) from the
principal’s cred table.

� The principal’s encrypted DES key from the keyserver

� The encrypted time stamp

� The encrypted window

9. NIS+ then passes the following information to the server where the NIS+ object is
stored:

� The access request (whatever it might be)

� The principal’s DES credential

� Window verifier (encrypted), which is the encrypted window plus one

10. The object’s server receives this information.

11. The object’s server uses the Secure RPC netname portion of the credential to look
up the principal’s public key in the cred table of the principal’s home domain.

12. The server then uses the principal’s public key and the server’s private key to
regenerate the common key. This common key must match the common key that
was generated by the principal’s private key and the server’s public key.

13. The common key is used to decrypt the DES key that arrived as part of the
principal’s credential.

14. The server decrypts the principal’s time stamp with the newly decrypted DES key
and verifies it with the window verifier.

15. The server then compares the decrypted and verified time stamp with the server’s
current time and proceeds as follows:

a. If the time difference at the server exceeds the window limit, the request is
denied and the process aborts with an error message. For example, suppose
the time stamp is 9:00am and the window is one minute. If the request is
received and decrypted by the server after 9:01am, it is denied.

b. If the time stamp is within the window limit, the server checks to see if the
time stamp is greater than the one previously received from the principal. This
ensures that NIS+ requests are handled in the correct order.

� Requests received out of order are rejected with an error message. For
example, if the time stamp is 9:00am and the most recently received request
from this principal had a time stamp of 9:02am, the request would be
rejected.

� Requests that have a time stamp equal to the previous one are rejected with
an error message. This ensures that a replayed request is not acted on twice.
For example, if the time stamp is 9:00am and the most recently received
request from this principal also had a time stamp of 9:00am, this request
would be rejected.

16. If the time stamp is within the window limit, and greater than the previous
request from that principal, the server accepts the request.

88 Solaris Naming Administration Guide ♦ May 1999

17. The server then complies with the request and stores the time stamp from this
principal as the most recently received and acted on request.

18. To confirm to the principal that the information received from the server in
answer to the request comes from a trusted server, the server encrypts the time
stamp with the principal’s DES key and sends it back to the principal along with
the data.

19. At the principal’s end, the returned time stamp is decrypted with the principal’s
DES key.

� If the decryption succeeds, the information from the server is returned to the
requester.

� If the decryption fails for some reason, an error message is displayed.

The DES Credential in Detail
The DES credential consists of:

� The principal’s Secure RPC netname (see “DES Credential Secure RPC Netname” on
page 89below).

� A verification field (see “DES Credential Verification Field” on page 90, below).

DES Credential Secure RPC Netname
� Secure RPC netname. This portion of the credential is used to identify the NIS+

principal. Every Secure RPC netname contains three components:

� Prefix. The prefix is always the word unix .
� Identifier. If the principal is a client user, the ID field is the user’s UID. If the

principal is a client workstation, the ID field is the workstation’s hostname.
� Domain name. The domain name is the name of the domain that contains the

principal’s DES credential (in other words, the principal’s home domain).

Note - Remember that an NIS+ principal name always has a trailing dot, and a
Secure RPC netname never has a trailing dot.

Administering NIS+ Credentials 89

TABLE 7–1 Secure RPC Netname Format

Principal Prefix Identifie Domain Example

User unix UID Domain
containing user’s
password entry
and the DES
credential itself

unix.24601@sales.doc.com

Workstation unix hostname The domain name
returned by
executing the
domainname
command on that
workstation

unix.machine7@sales.doc.com

DES Credential Verification Field
The verification field is used to make sure the credential is not forged. It is generated
from the credential information stored in the cred table.

The verification field is composed of:

� The principal’s encrypted DES key, generated from the principal’s private key
and the NIS+ server’s public key as described in “Request Phase—Detailed
Description” on page 87

� The encrypted time stamp

� The time window

How the DES Credential Is Generated
See Figure 7–2.

To generate its DES credential, the principal depends on the keylogin command,
which must have been executed before the principal tries to generate its credential.
The keylogin command (often referred to simply as a keylogin) is executed
automatically when an NIS+ principal logs in.

Note - Note that if the principal’s login password is different from the principal’s
Secure RPC password, a successful keylogin cannot be performed. See “Secure RPC
Password versus Login Password Problem” on page 92 for a discussion of this
situation.

90 Solaris Naming Administration Guide ♦ May 1999

The purpose of the keylogin is to give the principal access to the principal’s private
key. keylogin fetches the principal’s private key from the cred table, decrypts it
with the principal’s Secure RPC password (remember that the private key was
originally encrypted with the principal’s Secure RPC password), and stores it locally
with the keyserver for future NIS+ requests.

Cred Table

Public
Private Key
 Key

 Private
 Key

keylogin

Secure RPC
Password

Stored by keyserver

Encrypted

Credential Information
Created by Administrator

DecryptedDecrypts with

Figure 7–1 keylogin Generates a Principal’s Private Key

To generate its DES credential, the principal still needs the public key of the server to
which it will send the request. This information is stored in the principal’s directory
object. Once the principal has this information, it can form the verification field of
the credential.

First, the principal generates a random DES key for encrypting various credential
information. The principal uses its own private key (stored in the keyserver) and the
server’s public key to generate a common key that is used to generate and encrypt the
random DES key. It then generates a time stamp that is encrypted with the DES key
and combines it with other credential-related information into the verification field:

 Principal’s decrypted

encrypt

encrypt

Random DES key

Time stamp

Window

Principal’s netname

 Server ’s public key

 +
Common key

To object’s
server

T
he

 D
E

S
 C

re
de

nt
ia

l

encrypt

private key stored by
keyserver

Along with the
original NIS+
request and the
window verifier

Figure 7–2 Creating the DES Credential

Administering NIS+ Credentials 91

Secure RPC Password versus Login Password
Problem
When a principal’s login password is different from his or her Secure RPC password,
keylogin cannot decrypt it at login time because keylogin defaults to using the
principal’s login password, and the private key was encrypted using the principal’s
Secure RPC password.

When this occurs, the principal can log in to the system, but for NIS+ purposes the
principal is placed in the authorization class of nobody because the keyserver does
not have a decrypted private key for that user. Since most NIS+ environments are set
up to deny the nobody class create, destroy, and modify rights to most NIS+ objects,
this results in “permission denied” errors when the user tries to access NIS+ objects.

Note - In this context, network password is sometimes used as a synonym for Secure
RPC password. When prompted for your “network password,” enter your Secure RPC
password.

To be placed in one of the other authorization classes, a user in this situation must
explicitly run the keylogin program and give the principal’s Secure RPC password
when keylogin prompts for a password. (See “Keylogin” on page 108.)

But an explicit keylogin provides only a temporary solution that is good only for
the current login session. The keyserver now has a decrypted private key for the
user, but the private key in the user’s cred table is still encrypted using the user’s
Secure RPC password, which is different than the user’s login password. The next
time the user logs in, the same problem recurs. To permanently solve the problem the
user needs to re-encrypt the private key in the cred table to one based on the user’s
login ID rather than the user’s Secure RPC password. To do this, the user needs to
run chkey −p as described in “Changing Keys for an NIS+ Principal” on page 109.

Thus, to permanently solve problems related to a difference in Secure RPC password
and login password, the user (or an administrator acting for the user) must perform
these steps:

1. Login using the login password.

2. Run the keylogin program to temporarily get a decrypted private key stored in
the keyserver and thus gain temporary NIS+ access privileges.

3. Run chkey −p to permanently change the encrypted private key in the cred table
to one based on the user’s login password.

4. When you are ready to finish this login session, run keylogout .

5. Log off the system with logout .

Cached Public Keys Problems
Occasionally, you may find that even though you have created the proper credentials
and assigned the proper access rights, some principal requests still get denied. The

92 Solaris Naming Administration Guide ♦ May 1999

most common cause of this problem is the existence of stale objects with old versions
of a server’s public key. You can usually correct this problem by:

� Running nisupdkeys on the domain you are trying to access. (See “The
nisupdkeys Command” on page 114 for information on using the nisupdkeys
command and “Stale and Outdated Credential Information” on page 532 for
information on how to correct this type of problem.)

� Killing the nis_cachmgr on your machine, removing
/var/nis/NIS_SHARED_DIRCACHE , and then restarting nis_cachemgr .

Where Credential-Related Information Is
Stored
This section describes where credential-related information is stored throughout the
NIS+ namespace.

Credential-related information, such as public keys, is stored in many locations
throughout the namespace. NIS+ updates this information periodically, depending
on the time-to-live values of the objects that store it, but sometimes, between
updates, it gets out of sync. As a result, you may find that operations that should
work, do not. lists all the objects, tables, and files that store credential-related
information and how to reset it.

TABLE 7–2 Where Credential-Related Information Is Stored

Item Stores To Reset or Change

cred table NIS+ principal’s public key and
private key. These are the
master copies of these keys.

Use nisaddcred to create new
credentials; it updates existing
credentials. An alternative is chkey .

directory object A copy of the public key of each
server that supports it.

Run the /usr/lib/nis/
nisupdkeys command on the
directory object.

keyserver The secret key of the NIS+
principal that is currently
logged in.

Run keylogin for a principal user or
keylogin −r for a principal
workstation.

NIS+ daemon Copies of directory objects,
which in turn contain copies of
their servers’ public keys.

Kill the rpc.nisd daemon and the
cache manager and remove
NIS_SHARED_DIRCACHEfrom /var/
nis . Then restart both.

Administering NIS+ Credentials 93

TABLE 7–2 Where Credential-Related Information Is Stored (continued)

Item Stores To Reset or Change

Directory cache A copy of directory objects,
which in turn contain copies of
their servers’ public keys.

Kill the NIS+ cache manager and
restart it with the nis_cachemgr −i
command. The −i option resets the
directory cache from the cold-start file
and restarts the cache manager.

cold-start file A copy of a directory object,
which in turn contains copies of
its servers’ public keys.

On the root master, kill the NIS+
daemon and restart it. The daemon
reloads new information into the
existing NIS_COLD_STARTfile. On a
client workstation, first remove the
NIS_COLD_STARTand
NIS_SHARED_DIRCACHEfiles from /
var/nis , and kill the cache manager.
Then re-initialize the principal with
nisinit −c . The principal’s trusted
server reloads new information into
the workstation’s NIS_COLD_START
file.

passwd table A user’s password. Use the passwd −r nisplus
command. It changes the password in
the NIS+ passwd table and updates it
in the cred table.

passwd file A user’s password or a
workstation’s superuser
password.

Use the passwd −r nisplus
command, whether logged in as super
user or as yourself, whichever is
appropriate.

passwd

map (NIS)

A user’s password Use the passwd −r nisplus
command.

The cred Table in Detail
Credential information for principals is stored in a cred table. The cred table is one of
the 16 standard NIS+ tables. Each domain has one cred table, which stores the
credential information of client workstations that belong to that domain and client
users who are allowed to log into them. (In other words, the principals of that
domain.) The cred tables are located in their domains’ org_dir subdirectory.

94 Solaris Naming Administration Guide ♦ May 1999

Caution - Never link a cred table. Each org_dir directory must have its own cred
table. Never use a link to some other org_dir cred table.

For users, the cred table stores LOCAL credential information for all users who are
allowed to log into any of the machines in the domain. The cred table also stores
DES credential information for those users that have the domain as their home
domain.

You can view the contents of a cred table with the niscat command, described in
Chapter 14.

The cred table as shown in Table 7–3 has five columns:

TABLE 7–3 cred Table Credential Information

NIS+ Principal
Name

Authentication
Type

Authentication
Name Public Data Private Data

Column Name cname auth_type auth_name public_data private_data

User
Fully qualified
principal name

LOCAL UID GID list

Machine Fully qualified
principal name

DES Secure RPC
netname

Public key Encrypted
Private key

The Authentication Type column, determines the types of values found in the other
four columns.

� LOCAL. If the authentication type is LOCAL, the other columns contain a
principal user’s name, UID, and GID; the last column is empty.

� DES. If the authentication type is DES, the other columns contain a principal’s
name, Secure RPC netname, public key, and encrypted private key. These keys are
used in conjunction with other information to encrypt and decrypt a DES
credential.

Creating Credential Information
There are several methods of creating and administering credential information:

Administering NIS+ Credentials 95

� Use Solstice AdminSuite tools if you have them available. They provide easier
methods of credential administration and are recommended for administering
individual credentials.

� Use the nisclient script. This is another easy method of creating or altering
credentials for a single principal. Because of its convenience, this is a
recommended method of administering individual credentials. Part 1 of Solaris
Naming Setup and Configuration Guide gives step by step instructions on using
the nisclient script to create credential information.

� Use the nispopulate script. This is an easy method of creating or altering
credentials for a one or more principals who already have information on them
stored in NIS maps or /etc files. Because of its convenience, this is a
recommended method of administering credentials for groups of NIS+ principals.
Part 1 of Solaris Naming Setup and Configuration Guide gives step by step
instructions on using the nispopulate script to create credential information.

� Use the nisaddcred command. The section below describes how credentials and
credential information are created using nisaddcred .

The nisaddcred Command
The command used to create credential information is nisaddcred .

Note - You can also use the nispopulate and nisclient scripts to create
credential information. They, in turn, use the nisaddcred command. These scripts
are much easier to use, and more efficient, than the nisaddcred command. Unless
your network requires special features, you should use the scripts.

The nisaddcred command creates, updates, and removes LOCAL and DES
credential information. To create credential information, you must have create rights
to the proper domain’s cred table. To update a credential, you must have modify
rights to the cred table or, at least, to that particular entry in the cred table. To delete
a credential, you must have destroy rights to the cred table or the entry in the cred
table.

� To create or update credentials for another NIS+ principal, use:

For LOCAL credentials

nisaddcred -p uid -P principal-name local

For DES credentials

nisaddcred -p rpc-netname -P principal-name des

� To update your own credentials, use:

For LOCAL credentials

96 Solaris Naming Administration Guide ♦ May 1999

nisaddcred −local

For DES credentials, use:

nisaddcred des

� To remove credentials, use:

nisaddcred −r principal-name

Related Commands
In addition to the nisaddcred command described in this chapter, two other
commands can provide some useful information about credentials:

TABLE 7–4 Additional Credential-Related Commands

Command Description See

niscat −o Lists a directory’s properties. By looking in the public key
field of the directory’s server, you can tell whether the
directory object is storing a public key.

“Listing the Object
Properties of a Directory”
on page 196

nismatch − When run on the cred table, displays credential
information for principal. “The nismatch and

nisgrep Commands ” on
page 238

How nisaddcred Creates Credential Information

LOCAL Credential Information
When used to create LOCAL credential information, nisaddcred simply extracts
the principal user’s UID (and GID) from the principal’s login record and places it in
the domain’s cred table.

Administering NIS+ Credentials 97

DES Credential Information
When used to create DES credential information, nisaddcred goes through a
two-part process:

1. Forming the principal’s Secure RPC netname. A Secure RPC netname is formed
by taking the principal’s user ID number from the password record and
combining it with the domain name (unix.1050@doc.com , for example).

2. Generating the principal’s private and public keys.

To encrypt the private key, nisaddcred needs the principal’s Secure RPC password.
When the nisaddcred command is invoked with the −des argument, it prompts
the principal for a Secure RPC password. Normally, this password is the same as the
principal’s login password. (If it is different, the user will have to perform additional
steps when logging in, as described in “Secure RPC Password versus Login
Password Problem” on page 92.)

The nisaddcred command generates a pair of random, but mathematically related
192-bit authentication keys using the Diffie-Hellman cryptography scheme. These
keys are called the Diffie-Hellman key-pair, or simply key-pair for short.

One of these is the private key, and the other is the public key. The public key is placed
in the public data field of the cred table. The private key is placed in the private data
field, but only after being encrypted with the principal’s Secure RPC password:

NIS+ Principal nisaddcred Cred Table

 Network
Password +

 supplies generates

Public Private
 Key

 Public
 Key

Private
 Data Data

 stores

nisaddcred :

Figure 7–3 How nisaddcred Creates a Principal’s Keys

The principal’s private key is encrypted as a security precaution because the cred
table, by default, is readable by all NIS+ principals, even unauthenticated ones.

The Secure RPC Netname and NIS+ Principal
Name
When creating credential information, you will often have to enter a principal’s
rpc-netname and principal-name. Each has its own syntax:

98 Solaris Naming Administration Guide ♦ May 1999

� Secure RPC netname. A Secure RPC netname is a name whose syntax is determined
by the Secure RPC protocol. Therefore, it does not follow NIS+ naming
conventions:

� For users, the syntax is: unix .uid@domain

� For machines, the syntax is: unix .hostname@domain

If a Secure RPC netname identifies a user, it requires the user’s UID. If it identifies
a workstation, it requires the workstation’s host name. (When used with the
nisaddcred command it is always preceded by the −p (lowercase) flag.)

A Secure RPC netname always begins with the unix (all lowercase) prefix and
ends with a domain name. However, because it follows the Secure RPC protocol,
the domain name does not contain a trailing dot.

� Principal name. An NIS+ principal follows the normal NIS+ naming conventions,
but it must always be fully qualified. the syntax is: principal.domain.

Whether it identifies a client user or a client workstation, it begins with the
principal’s name, followed by a dot and the complete domain name, ending in a dot.
(When used with nisaddcred to create credential information, it is always preceded
by the −P (uppercase) flag. When used to remove credential information, it does not
use the −P flag.)

Creating Credential Information for the
Administrator
When a namespace is first set up, credential information is created first for the
administrators who will support the domain. Once they have credential information,
they can create credential information for other administrators, client workstations,
and client users.

When you try to create your own credential information, you run into a problem of
circularity: you cannot create your own credential information unless you have
Create rights to your domain’s cred table, but if the NIS+ environment is properly
set up, you cannot have such rights until you have credentials. You have to step out
of the loop somehow. You can do this in one of two ways:

� By creating your credential information while logged in as superuser to your
domain’s master server

� By having another administrator create your credential information using a
dummy password, then changing your password with the chkey command.

In either case, your credential information is thus created by another NIS+ principal.
To create your own credential information, follow the instructions in “Creating
Credential Information for NIS+ Principals” on page 100.

Administering NIS+ Credentials 99

Creating Credential Information for NIS+
Principals
Credential information for NIS+ principals can be created any time after their
domain has been set up; in other words, once a cred table exists.

To create credential information for an NIS+ principal:

� You must have Create rights to the cred table of the principal’s home domain.

� The principal must be recognized by the server. This means that:

� If the principal is a user, the principal must have an entry either in the
domain’s NIS+ passwd table or in the server’s /etc/passwd file.

� If the principal is a workstation, it must have an entry either in the domain’s
NIS+ Hosts table or in the server’s

Once those conditions are met, you can use the nisaddcred command with both
the −p and −P options:

For LOCAL credentials

nisaddcred -p uid -P principal-name local

For DES credentials

nisaddcred -p rpc.netname -P principal-name des

Remember these principles:

� You can create both LOCAL and DES credential information for a principal user.

� You can only create DES credential information for a principal workstation.

� You can create DES credential information only in the principal’s home domain
(user or machine).

� You can create LOCAL credential information for a user in both the user’s home
domain and in other domains.

For User Principals—Example
This example creates both LOCAL and DES credential information for an NIS+ user
named morena who has a UID of 11177 . She belongs to the doc.com. domain, so
this example enters her credential information from a principal machine of that
domain:

client# nisaddcred -p 11177 -P morena.doc.com. local
client# nisaddcred -p unix.11177@sales.doc.com \

-P morena.doc.com. des

(continued)

100 Solaris Naming Administration Guide ♦ May 1999

(Continuation)

Adding key pair for unix.11177@sales.doc.com
(morena.doc.com.).

Enter login password:

The proper response to the Enter login password: prompt is morena’s login
password. (If you don’t know her login password, you can use a dummy password
that she can later change using chkey , as described in the next example.)

Using a Dummy Password and chkey —Example
If you don’t know the user’s login password, you can use a dummy password as
described below.

Table 7–5, shows how another administrator, whose credential information you
create using a dummy password, can then use chkey to change his or her own
password. In this example, you create credential information for an administrator
named Eiji who has a UID of 119. Eiji, whose login ID is eiji , belongs to the root
domain, so you would enter his credential information from the root master server
which is named rootmaster .

TABLE 7–5 Creating Administrator Credentials: Command Summary

Tasks Commands

Create LOCAL credential
information for Eiji. rootmaster# nisaddcred -p 119 -P eiji.doc.com. local

Create DES credential
information for Eiji.

rootmaster# nisaddcred -p unix.119@doc.com -P eiji.doc.com. des
Adding key pair for unix.119@doc.com (eiji.doc.com.).

Type dummy password for Eiji.
Enter eiji’s login password:
nisaddcred: WARNING: password differs from login passwd

Re-enter dummy password. Retype password:

You tell Eiji the dummy
password that you used.

Eiji logs into rootmaster. rootmaster% login: eiji

Eiji enters real login password. Password:

Administering NIS+ Credentials 101

TABLE 7–5 Creating Administrator Credentials: Command Summary (continued)

Tasks Commands

Eiji gets error message but is
allowed to log in anyway. Password does not decrypt secret key for unix.119@doc.com.

Eiji runs keylogin. rootmaster% keylogin

Eiji types dummy passwor Password: dummy-password

Eiji runs chkey

rootmaster%
chkey -p
Updating nisplus publickey database
Generating new key for’unix.119@doc.com’.

Eiji types real login password. Enter login password:

Eiji re-types real login password. Retype password:
Done.

First, you would create Eiji’s credential information in the usual way, but using a
dummy login password. NIS+ would warn you and ask you to re-type it. When you
did, the operation would be complete. The domain’s cred table would contain Eiji’s
credential information based on the dummy password. The domain’s passwd table
(or /etc/passwd file), however, would still have his login password entry so that
he can log on to the system.

Then, Eiji would log in to the domain’s master server, typing his correct login
password (since the login procedure checks the password entry in the passwd table
or /etc/passwd file). From there, Eiji would first run keylogin , using the dummy
password (since a keylogin checks the cred table), and then use the chkey −p
command to change the cred entry to the real thing.

Creating in Another Domain—Example
The two previous examples created credential information for a principal user while
the principal user was logged in to the master server of the principal’s home domain.
However, if you have the proper access rights, you can create credential information
in another domain. Simply append the domain name to this syntax:

For LOCAL credentials

nisaddcred -p uid -P principal-name local domain-name

For DES credentials

102 Solaris Naming Administration Guide ♦ May 1999

nisaddcred -p rpc-netname -P principal-name des domain-name

The following example first creates LOCAL and DES credential information for an
administrator named Chou in her home domain, which happens to be the root
domain, then adds her LOCAL credential information to the doc.com domain.
Chou’s UID is 11155. This command is typed on from the root master server. For
simplicity, it assumes you are entering Chou’s correct login password.

rmaster# nisaddcred -p 11155 -P chou.doc.com. local
rmaster# nisaddcred -p unix.11155@doc.com -P chou.doc.com. des
Adding key pair for unix.11155@doc.com (chou.doc.com.).
Enter login password:
rootmaster# nisaddcred -p 11155 -P chou.doc.com. local doc.com.

LOCAL credential information maps a UID to an NIS+ principal name. Although an
NIS+ principal that is a client user can have different user IDs in different domains,
it can have only one NIS+ principal name. So, if an NIS+ principal such as chou will
be logging in from a domain other than her home domain, not only should she have
a password entry in that domain, but also a LOCAL credential in that domain’s cred
table.

For Workstations—Example
This example creates credential information for a principal workstation. Its host name
is starshine1 and it belongs to the root domain. Therefore, its credential information is
created from the root master server. In this example, you create them while logged in
as root to the root master; however, if you already have valid credential information
and the proper access rights, you could create them while logged in as yourself.

rootmaster# nisaddcred -p unix.starshine1@doc.com -
P starshine1.doc.com. des
Adding key pair for unix.starshine1@doc.com

(starshine1.doc.com.).
Enter starshine1.doc.com.’s root login password:
Retype password:

The proper response to the password prompt is the principal workstation’s superuser
password. Of course, you could use a dummy password that would later be changed
by someone logged in as superuser to that principal workstation.

Administering NIS+ Credentials 103

Administering NIS+ Credential
Information
The following sections describe how to use the nisaddcred command to administer
existing credential information. You must have create, modify, read, and destroy
rights to the cred table to perform these operations.

Updating Your Own Credential Information
Updating your own credential information is considerably easier than creating it. Just
type the simple versions of the nisaddcred command while logged in as yourself:

nisaddcred des
nisaddcred local

To update credential information for someone else, you simply perform the same
procedure that you would use to create that person’s credential information.

Removing Credential Information
The nisaddcred command removes a principal’s credential information, but only
from the local domain where the command is run.

Thus, to completely remove a principal from the entire system, you must explicitly
remove that principal’s credential information from the principal’s home domain and
all domains where the principal has LOCAL credential information.

To remove credential information, you must have modify rights to the local domain’s
cred table. Use the −r option and specify the principal with a full NIS+ principal
name:

nisaddcred -r principal-name

The following two examples remove the LOCAL and DES credential information of
the administrator Morena.doc.com. The first example removes both types of
credential information from her home domain (doc.com.), the second removes her
LOCAL credential information from the sales.doc.com. domain. Note how they
are each entered from the appropriate domain’s master servers.

104 Solaris Naming Administration Guide ♦ May 1999

rootmaster# nisaddcred -r morena.doc.com.
salesmaster# nisaddcred -r morena.doc.com.

To verify that the credential information was indeed removed, run nismatch on the
cred table, as shown below. For more information about nismatch , see Chapter 14.

rootmaster# nismatch morena.doc.com. cred.org_dir
salesmaster# nismatch morena.doc.com. cred.org_dir

Administering NIS+ Credentials 105

106 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 8

Administering NIS+ Keys

This chapter describes NIS+ keys and how to administer them.

� “Keylogin” on page 108

� “Changing Keys for an NIS+ Principal” on page 109

� “Updating Public Keys” on page 114

� “The nisupdkeys Command” on page 114

� “Updating Public Keys Arguments and Examples ” on page 114

� “Updating IP Addresses ” on page 116

Note - Some NIS+ security tasks can be performed more easily with Solstice
AdminSuite tools if you have them available.

NIS+ Keys
NIS+ keys are used to encrypt NIS+ related information.

This chapter assumes that you have an adequate understanding of the NIS+ security
system in general, and in particular of the role that keys play in that system (see
Chapter 6, for this information).

For a complete description of NIS+ key-related commands and their syntax and
options, see the NIS+ man pages. (The nisaddcred command also performs some
key-related operations. See “The nisaddcred Command” on page 96 for more
information.)

107

Keylogin
When a principal logs in, the login process prompts for a password. That password
is used to pass the user through the login security gate and give the user access to
the network. The login process also decrypts the user’s private key stored in the
user’s home domain cred table and passes that private key to the keyserver. The
keyserver then uses that decrypted private key to authenticate the user each time the
user accesses an NIS+ object.

Normally, this is the only time the principal is asked to provide a password. However,
if the principal’s private key in the cred table was encrypted with a password that
was different from the user’s login password, login cannot decrypt it using the login
password at login time, and thus cannot provide a decrypted private key to the
keyserver. (This most often occurs when a user’s private key in the cred table was
encrypted with a Secure RPC password different from the user’s login password.)

Note - In this context, network password is sometimes used as a synonym for Secure
RPC password.

To temporarily remedy this problem, the principal must perform a keylogin, using
the keylogin command, after every login. (The −r flag is used to keylogin the
superuser principal and to store the superuser’s key in /etc/.rootkey on a host.)

For a principal user

keylogin

For a principal machine (only once)

keylogin -r

Note, however, that performing an explicit keylogin with the original password
provides only a temporary solution good for the current login session only. The
private key in the cred table is still encrypted with a password different than the
user’s login password so the next time the user logs in the problem will reoccur. To
permanently solve this problem, the user must run chkey to change the password
used to encrypt the private key to the user’s login password (see “Changing Keys for
an NIS+ Principal” on page 109).

108 Solaris Naming Administration Guide ♦ May 1999

Changing Keys for an NIS+ Principal
The chkey command changes an NIS+ principal’s public and private keys that are
stored in the cred table. It does not affect the principal’s entry either in the passwd
table or in the /etc/passwd file.

The chkey command:

� Generates new keys and encrypts the private key with the password. Run chkey
with the −p option to re-encrypt the existing private key with a new password.

� Generates a new Diffie-Hellman key pair and encrypts the private key with the
password you provide. (Multiple Diffie-Hellman key pairs can exist for each
principal.) In most cases, however, you do not want a new keypair, you want to
re-encrypt your current existing private key with the new password. To do this,
run chkey with the −p option.

See the man pages for more information on these subjects.

Note - In an NIS+ environment, when you change your login password with any of
the current administration tools or the passwd (or nispasswd) commands, your
private key in the cred table is automatically re-encrypted with the new password for
you. Thus, you do not need to explicitly run chkey after a change of login password.

The chkey command interacts with the keyserver, the cred table, and the passwd
table. In order to run chkey , you:

� Must have an entry in the passwd table of your home domain. Failure to meet this
requirement will result in an error message.

� Must run keylogin to make sure that the keyserver has a decrypted private key
for you.

� Must have modify rights to the cred table. If you do not have modify rights you
will get a “permission denied” type of error message.

� Must know the original password with which the private key in the cred table was
encrypted. (In most cases, this your Secure RPC password.)

To use the chkey command to re-encrypt your private key with your login
password, you first run keylogin using the original password, and then use chkey
−p as shown in Table 8–1which illustrates how to perform a keylogin and chkey
for a principal user:

Administering NIS+ Keys 109

TABLE 8–1 Re-encrypting Your Private Key : Command Summary

Tasks Commands

Log in. Sirius% login Login-name

Provide login password. Password:

If login password and Secure RPC password are
different, perform a keylogin.

Sirius% keylogin

Provide the original password that was used to
encrypt the private key.

Password: Secure RPC password

Run chkey. Sirius% chkey −p
Updating nisplus publickey database
Updating new key for ’unix.1199@Doc.com’.

Enter login password. Enter login password: login-password

Re-enter login. password Retype password:

Changing the Keys
The following sections describe how to change the keys of an NIS+ principal.

Note - Whenever you change a server’s keys, you must also update the key
information of all the clients in that domain as explained in “Updating Client Key
Information ” on page 116.

Changing Root Keys From Root
Table 8–2, shows how to change the keys for the root master server from the root
master (as root):

110 Solaris Naming Administration Guide ♦ May 1999

TABLE 8–2 Changing a Root Master’s Keys: Command Summary

Tasks Commands

Create new DES credentials
rootmaster#
nisaddcred des

Find the Process ID of rpc.nisd rootmaster# ps -e | grep rpc.nisd

Kill the NIS+ daemon rootmaster# kill pid

Restart NIS+ daemon with no security rootmaster# rpc.nisd -S0

Perform a keylogout (previous keylogin is now out of
date).

rootmaster# keylogout -f

Update the keys in the directories served by the master rootmaster# nisupdkeys dirs

Find the Process ID of rpc.nisd rootmaster# ps -e | grep rpc.nisd

Kill the NIS+ daemon rootmaster# kill pid

Restart NIS+ daemon with default security rootmaster# rpc.nisd

Perform a keylogin rootmaster# keylogin

Where:

� pid is the process ID number reported by the ps -e | grep rpc.nisd command.

� dirs are the directory objects you wish to update. (That is, the directory objects that
are served by rootmaster .)

In the first step of the process outlined in Table 8–2, nisaddcred updates the cred
table for the root master, updates /etc/.rootkey and performs a keylogin for the
root master. At this point the directory objects served by the master have not been
updated and their credential information is now out of synch with the root master.
The subsequent steps described in Table 8–2 are necessary to successfully update all
the objects.

Note - Whenever you change a server’s keys, you must also update the key
information of all the clients in that domain as explained in “Updating Client Key
Information ” on page 116.

Administering NIS+ Keys 111

Changing Root Keys From Another Machine
To change the keys for the root master server from some other machine you must
have the required NIS+ credentials and authorization to do so.

TABLE 8–3 Remotely Changing Root Master Keys: Command Summary

Tasks Commands

Create the new DES
credentials

othermachine%
nisaddcred -p principal -P nisprincipal des

Update the directory objects. othermachine%nisupdkeys dirs

Update /etc.roootkey. othermachine% keylogin -r

Reinitialize othermachine as
client

othermachine% nisinit -cH

Where:

� principal is the root machine’s Secure RPC netname. For
example: unix.rootmaster@doc.com (no dot at the end).

� nis-principal is the root machine’s NIS+ principal name. For example,
rootmaster.doc.com. (a dot at the end).

� dirs are the directory objects you wish to update (that is, the directory objects that
are served by rootmaster).

When running nisupdkeys be sure to update all relevant directory objects at the
same time. In other words, do them all with one command. Separate updates may
result in an authentication error.

Note - Whenever you change a server’s keys, you must also update the key
information of all the clients in that domain as explained in “Updating Client Key
Information ” on page 116.

Changing the Keys of a Root Replica from the
Replica
To change the keys of a root replica from the replica, use these commands:

112 Solaris Naming Administration Guide ♦ May 1999

replica# nisaddcred des
replica# nisupdkeys dirs

Where:

� dirs are the directory objects you wish to update, (that is, the directory objects that
are served by replica).

When running nisupdkeys be sure to update all relevant directory objects at the
same time. In other words, do them all with one command. Separate updates may
result in an authentication error.

Note - Whenever you change a server’s keys, you must also update the key
information of all the clients in that domain as explained in “Updating Client Key
Information ” on page 116

Changing the Keys of a Nonroot Server
To change the keys of a nonroot server (master or replica) from the server, use these
commands:

subreplica# nisaddcred des
subreplica# nisupdkeys parentdir dirs

Where:

� parentdir is the non-root server’s parent directory (that is, the directory containing
subreplica ’s NIS+ server).

� dirs are the directory objects you wish to update (that is, the directory objects that
are served by subreplica).

When running nisupdkeys be sure to update all relevant directory objects at the
same time. In other words, do them all with one command. Separate updates may
result in an authentication error.

Note - Whenever you change a server’s keys, you must also update the key
information of all the clients in that domain as explained in “Updating Client Key
Information ” on page 116

Administering NIS+ Keys 113

Updating Public Keys
The public keys of NIS+ servers are stored in several locations throughout the
namespace. When new credential information is created for the server, a new key
pair is generated and stored in the cred table. However, namespace directory objects
still have copies of the server’s old public key. The nisupdkeys command is used to
update those directory object copies.

The nisupdkeys Command
If a new keypair is generated because the old key pair has been compromised or the
password used to encrypt the private key is forgotten, the nisupdkeys can be used
to update the old public key in the directory objects.

The nisupdkeys command can:

� Update the key of one particular server

� Update the keys of all the servers that support an NIS+ directory object

� Remove a server’s public key from the directory object

� Update a server’s IP address, if that has changed

However, nisupdkeys cannot update the NIS_COLD_STARTfiles on the principal
workstations. To update their copies of a server’s keys, NIS+ clients should run the
nisclient command. Or, if the NIS+ cache manager is running and more than one
server is available in the coldstart file, the principals can wait until the time-to-live
expires on the directory object. When that happens, the cache manager automatically
updates the cold-start file. The default time-to-live is 12 hours.

To use the nisupdkeys command, you must have modify rights to the NIS+
directory object.

Updating Public Keys Arguments and Examples
The nisupdkeys command is located in /usr/lib/nis . The nisupdkeys
command uses the following arguments (for a complete description of the
nisupdkeys command and a full list of all its arguments, see the nisupdkeys man
page):

114 Solaris Naming Administration Guide ♦ May 1999

TABLE 8–4 nisupdkeys Arguments

Argument Effect

(no argument) Updates all keys of servers for current domain

directoryname Updates the keys of the directory object for the named
directory.

−H servername
Updates the keys of the named server for the current domain
directory object. A fully qualified host name can be used to
update the keys of servers in other domains.

−s −H servername
Updates the keys of all the directory objects served by the
named server.

−C
Clears the keys.

Table 8–5gives an example of updating a public key:

TABLE 8–5 Updating a Public Key: Command Examples

Tasks Commands

Update all keys of all servers of the current
domain (doc.com).

rootmaster# /usr/lib/nis/nisupdkeys
Fetch Public key for server rootmaster.doc.com.
netname=’unix.rootmaster@doc.com’
Updating rootmaster.doc.com.’s public key.
Public key: public-key

Update keys of all servers supporting the
sales.doc.com domain directory object.

salesmaster# nisupdkeys
sales.doc.com

(Screen notices not shown)

Update keys for a server named master7 in
all the directories that store them.

rootmaster# nisupdkeys -H master7

Clear the keys stored by the
sales.doc.com directory object.

rootmaster# nisupdkeys -C sales.doc.com

Clear the keys for the current domain
directory object for the server named
master7.

rootmaster# nisupdkeys -C -H master7

Administering NIS+ Keys 115

Updating IP Addresses
If you change a server’s IP address, or add additional addresses, you need to run
nisupdkeys to update NIS+ address information.

To update the IP addresses of one or more servers, use the nisupdkeys command
−a option.

To update the IP addresses of servers of a given domain

rootmaster# nisupdkeys -a domain

To update the IP address of a particular server

rootmaster# nisupdkeys -a -H server

Updating Client Key Information
Whenever you change any server’s keys, you must update all of the clients as well.
Remember, that all NIS+ servers are also NIS+ clients, so if you update the keys on
one server, you must update key information on all other machines in the domain
regardless of whether or not they are NIS+ servers or ordinary clients.

There are three ways to update client key information:

� The easiest way to update an individual client’s key information is by running the
nisclient script on the client as described in Solaris Naming Setup and
Configuration Guide.

� Another way to update an individual client’s key information is by running the
nisinit command on the client as described in “Initializing a Client” on page
207.

� You can globally update client key information for all the machines in a domain
by shortening the Time To Live value of the domain’s directory object as explained
in “Globally Updating Client Key Information ” on page 116.

Globally Updating Client Key Information
After changing a server’s keys, you can globally update client key information for all
the machines in a domain by:

1. Use the nischttl command to reduce the Time To Live (TTL) value of the
domain’s directory object so that the value expires almost immediately.

116 Solaris Naming Administration Guide ♦ May 1999

For example, if you have changed the keys for a server in the sales.doc.com.
domain, to reduce the directory’s TTL value to one minute you would enter:

client% nischttl 60 sales.doc.com.

2. When the directory’s TTL value expires, the cache manager expires the entry
and then obtains the new, updated information for clients.

3. Once the directory object’s TTL value has expired, reset the directory object’s
TTL to its default value.

For example, to reset the TTL value to 12 hours for the sales.doc.com.
domain’s directory object, you would enter:

client% nischttl 12h sales.doc.com.

See “The nischttl Command” on page 215 for more information on working
with TTL values.

Administering NIS+ Keys 117

118 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 9

Administering Enhanced Security
Credentials

� “Diffie-Hellman Extended Key” on page 119

� “Transitioning to a New Public Key-based Security Mechanism” on page 120

� “Configuring NIS+ Security Mechanisms” on page 120

� “Creating New Security Mechanism Credentials” on page 121

� “Adding New Keys to NIS+ Directory Objects” on page 121

� “Configuring NIS+ Servers to Accept New Security Mechanism Credentials” on
page 122

� “Changing the Password Protecting New Credentials” on page 124

� “Configuring Servers to Accept only New Security Mechanism Credentials” on
page 124

� “Removing Old Credentials from the cred Table” on page 125

Diffie-Hellman Extended Key
NIS+ offers increased security at the RPC(3N) layer beyond 192 bit Diffie-Hellman
(RPC(3N) security flavor AUTH_DES) using the RPCSEC_GSS RPC(3N) security
flavor. See the nisauthconf (1M) command for a list of which security mechanisms
are available on the system. Along with more stringent cryptographic strength, these
security mechanisms also provide integrity for each NIS+ transaction. That is, the
data for each NIS+ transaction is verified that it has not been modified.

119

System administraters can take advantage of the more stringent security mechanisms
either by running nisauthconf (1M) before the NIS+ server environment is
constructed or after, using the guidelines below.

Transitioning to a New Public
Key-based Security Mechanism
The more stringent security mechanisms of the public key cryptography family such
as Diffie Hellman 640 bit (dh640-0) will require new credentials for each principal to
be added to the existing cred table. The procedure outlined below is for a system
currently running with Diffie-Hellman 192 bit (RPC security flavor AUTH_DES)
security that will be converted to running with Diffie-Hellman 640 bit (RPC security
flavor RPCSEC_GSS) security. Although this transition document highlights the most
likely case, the principles are the same for converting from any one security
mechanism type of the public key cryptography family to another security
mechanism of the public key cryptography family.

Note - The following example assumea that $PATH includes /usr/lib/nis .

Configuring NIS+ Security Mechanisms
NIS+ security configuration is done with the nisauthconf (1M) command.
nisauthconf takes a list of security mechanisms in order of preference. A security
mechanism may use one or more authentication flavors specified in
secure_rpc (3N). If des is the only specified mechanism, then NIS+ only uses
AUTH_DES for authentication with other NIS+ clients and servers. Any other
security mechanisms after des will be ignored by NIS+, except for nisaddcred (1M).

nisauthconf [-v] [mechanism, ...]

Where mechanism is a RPC security mechanism that is available on the system. See
nisauthconf (1M) for the list of mechanisms available. If no mechanisms are
specified, then a list of currently configured mechanisms is printed.

120 Solaris Naming Administration Guide ♦ May 1999

Creating New Security Mechanism
Credentials
Credential information for the new mechanism must be created for each NIS+ user
and host principal. In order to do this, on one of the machines running NIS+, the
nisauthconf (1M) command must be run to allow the creation of new credentials
while the system continues to authenticate with the current mechanism. Also see
“Creating Credential Information for NIS+ Principals” on page 100 for details on
credential creation basics.

New Security Mechanism Credentials –Example
Converting des to dh640-0; the nisauthconf should be run as root and the
nisaddcred should be run as any principal that has Create rights in the principal’s
home directory. The server is named server1 and the user principal is named
morena. User morena has UID 11177.

client# nisauthconf des dh640-0
client% nisaddcred -P server1.doc.com. -p unix.server1@doc.com dh640-0

(screen notices not shown)
client% nisaddcred -P morena.doc.com. -p unix.11177@doc.com -ldummy-password dh640-
0

(screen notices not shown)

Adding New Keys to NIS+ Directory
Objects
Once the new credentials have been generated for all the servers, run
nisupdkeys (1m) to add the new public keys to all the directory objects served by
these servers. To use the nisupdkeys (1m) command, you must have modify rights
to the NIS+ directory object. See the “Updating Public Keys” on page 114 for more
details.

Caution - All servers that serve these NIS+ directories and all clients that access
these directories must be running Solaris 7 or later.

Administering Enhanced Security Credentials 121

Adding New Public Keys to NIS+ Directory
objects—Example
In this example, the directories that are being served by the servers with new public
keys are doc.com , org_dir.doc.com. , groups_dir.doc.com. . The update will
be done as the master server principal. Before running the new mechanism,
nisupdkeys needs to be configured with nisauthconf (1M). In this example, the
current authentication mechanism is des and the new mechanism is dh640-0.

masterserver# nisauthconf dh640-0 des
masterserver# nisupdkeys doc.com.

(screen notices not shown)
masterserver# nisupdkeys org_dir.doc.com.

(screen notices not shown)
masterserver# nisupdkeys groups_dir.doc.com.

(screen notices not shown)

Configuring NIS+ Servers to Accept
New Security Mechanism Credentials
On each server, configure NIS+ authentication so that it accepts both the old and
new credentials. This will require running nisauthconf (1m) and keylogin (1) and
restarting keyserv (1m). The keylogin (1) command stores the keys for each
mechanism in the /etc/.rootkey . See “Keylogin” on page 108 for basic keylogin
details.

Configuring NIS+ Servers to Accept New Security
Mechanism Credentials—Example
In this example, the current authentication mechanism is des and the new
mechanism is dh640-0. Note the ordering is significant here; any mechanisms after
the des entry will be ignored for client and server NIS+ authentication.

server# nisauthconf dh640-0 des
server# keylogin -r

(screen notices not shown)
server# /etc/reboot

122 Solaris Naming Administration Guide ♦ May 1999

Configuring Workstations to Use New
Security Mechanism Credentials
Now that the servers can accept the new credentials, the workstations can be
converted to authenticate via the new credentials. To do this, run nisauthconf (1M)
and keylogin (1)as root and reboot.

Configuring Workstations to Use New Security
Mechanism Credentials—Examples
In this example, the new mechanism is dh640-0 but the system will also attempt
authentication with des credentials if the dh640-0 ones are not available or do not
succeed.

workstation# nisauthconf dh640-0 des
workstation# keylogin -r

(screen notices not shown)
workstation# /etc/reboot

In the next example, the new mechanism is dh640-0 and authentication will only be
attempted with this mechanism. Before configuring any system to authenticate via
the new mechanism exclusively, the cached directory objects must be refreshed to
include the keys for the new mechanism. This can be verified with
nisshowcache (1M) . An alternative to waiting for the cached directory objects to
timeout and be refreshed in the following: kill nis_cachemgr (1M) , then construct a
new NIS_COLD_STARTwith nisinit (1M) ,and then restart niscachemgr (1M).

Manually Refresh Directory Objects—ExampleNETNAMER
To manually refresh directory objects:

pkill -u 0 nis_cachemgr
nisinit -cH masterserver
niscachemgr -i

Administering Enhanced Security Credentials 123

Caution - The workstation principal and all users of this workstation must have
dh640-0 credentials in the cred table before the system can be configured to
authenticate exclusively with dh640–0.

workstation# nisauthconf dh640-0
workstation# keylogin -r

(screen notices not shown)
workstation# /etc/reboot

Changing the Password Protecting New
Credentials
For each user given new credentials with the dummy passwd, they need to run
chkey (1) to convert to their login password. For more information, see “Changing
Keys for an NIS+ Principal” on page 109.

Change Password Protecting New
Credentials—Example
Run chkey (1) to convert to your login password:

chkey -p
(screen notices not shown)

Configuring Servers to Accept only
New Security Mechanism Credentials
When converting from a lower grade security mechanism to a higher one, the
maximum security benefit is achieved by configuring the NIS+ servers to only accept
credentials of the new higher grade security mechanism type. Do this only after the

124 Solaris Naming Administration Guide ♦ May 1999

servers have been successfully configured to authenticate via the old and the new
mechanism.

Before configuring any system to authenticate via the new mechanism exclusively,
the cached directory objects must be refreshed to include the keys for the new
mechanism and verified with nisshowcache (1M) .

Configuring Servers to Accept only New Security
Mechanism Credentials—Example
Run nisauthconf (1m) on each NIS+ server and reboot. In this example, the NIS+
server will be configured to only accept authentication of dh640-0 credentials.

server# nisauthconf dh640-0
server# /etc/reboot

Optionally, the directory objects can now be updated to remove the old public keys.
This should be done from the master server and nisupdkeys (1m) should be run
once for each directory served by the servers authenticating only with the new
security mechanism. In this example, the directories to be updated are doc.com ,
org_dir.doc.com. , and groups_dir.doc.com. .

masterserver# nisupdkeys doc.com.
(screen notices not shown)

masterserver# nisupdkeys org_dir.doc.com.
(screen notices not shown)

masterserver# nisupdkeys groups_dir.doc.com.

Removing Old Credentials from the
cred Table
If desired, the credentials of the old security mechanism can be removed from the
cred table. You must have modify rights to the local domain’s cred table. See the
section "Removing Credential Information" for more details".

Administering Enhanced Security Credentials 125

Removing old Credentials from the cred
Table—Example
In this example, the principal morena.doc.com will have her des credentials removed
from the cred table.

master# nisaddcred -r morena.doc.com. dh192-0

126 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 10

Administering NIS+ Access Rights

This chapter describes NIS+ access rights and how to administer them.

� “Introduction to Authorization and Access Rights” on page 128

� “Concatenation of Access Rights” on page 129

� “How Access Rights Are Assigned and Changed” on page 130

� “Table, Column, and Entry Security” on page 130

� “Where Access Rights Are Stored” on page 135

� “Viewing an NIS+ Object’s Access Rights” on page 135

� “Default Access Rights” on page 136

� “How a Server Grants Access Rights to Tables” on page 137

� “Specifying Access Rights in Commands” on page 137

� “Displaying NIS+ Defaults—The nisdefaults Command” on page 141

� “Setting Default Security Values” on page 143

� “Specifying Nondefault Security Values at Creation Time” on page 145

� “Changing Object and Entry Access Rights” on page 145

� “Specifying Column Access Rights” on page 147

� “Changing Ownership of Objects and Entries” on page 149

� “Changing an Object or Entry’s Group” on page 150

Note - Some NIS+ security tasks can be performed more easily with Solstice
AdminSuite tools if you have them available.

127

NIS+ Access Rights
NIS+ access rights determine what operations NIS+ users can perform and what
information they have access to. This chapter assumes that you have an adequate
understanding of the NIS+ security system in general, and in particular of the role
that access rights play in that system (see Chapter 6, for this information).

For a complete description of NIS+ access-related commands and their syntax and
options, see the NIS+ man pages.

Introduction to Authorization and
Access Rights
See “NIS+ Authorization and Access—Introduction ” on page 74 and Chapter 6” for
a description of how authorization and access rights work with NIS+ credentials and
authentication to provide security for the NIS+ namespace.

Authorization Classes—Review
As described more fully in “Authorization Classes” on page 75, NIS+ access rights
are assigned on a class basis. There are four different NIS+ classes:

� Owner. The owner class is a single NIS+ principal. By default, an object’s owner is
the principal that created the object. However, an object’s owner can transfer
ownership to another principal who then becomes the new owner.

� Group. The group class is a collection of one or more NIS+ principals. An NIS+
object can have only one NIS+ group.

� World. The world class contains all NIS+ principals that are authenticated by NIS+
(in other words, everyone in the owner and group class, plus everyone else who
presents a valid DES credential).

� Nobody. The nobody class is composed of anyone who is not properly
authenticated (in other words, anyone who does not present a valid DES
credential).

128 Solaris Naming Administration Guide ♦ May 1999

Access Rights—Review
As described more fully in “ NIS+ Access Rights” on page 78, there are four types of
NIS+ access rights:

� Read. A principal with read rights to an object can view the contents of that object.

� Modify. A principal with modify rights to an object can change the contents of that
object.

� Destroy. A principal with Destroy rights to an object can delete the object.

� Create. A principal with create rights to a higher level object can create new objects
within that level. In other words, if you have create rights to a NIS+ directory
object, you can create new tables within that directory. If you have create rights to
a NIS+ table, you can create new columns and entries within that table.

Keep in mind that these rights logically evolve down from directory to table to table
column and entry levels. For example, to create a new table, you must have create
rights for the NIS+ directory object where the table will be stored. When you create
that table, you become its default owner. As owner, you can assign yourself create
rights to the table which allows you to create new entries in the table. If you create
new entries in a table, you become the default owner of those entries. As table
owner, you can also grant table level create rights to others. For example, you can
give your table’s group class table level create rights. In that case, any member of the
table’s group can create new entries in the table. The individual member of the
group who creates a new table entry becomes the default owner of that entry.

Concatenation of Access Rights
Authorization classes are concatenated. In other words, the higher class usually
belongs to the lower class and automatically gets the rights assigned to the lower
class. It works like this:

� Owner class. An object’s owner may, or may not, belong to the object’s group. If the
owner does belong to the group, then the owner gets whatever rights are assigned
to the group. The object’s owner automatically belongs to the world and nobody
classes, so the owner automatically gets whatever rights that object assigns to
those two classes.

� Group class. Members of the object’s group automatically belong to the world and
nobody classes, so the group members automatically get whatever rights that
object assigns to world and nobody.

� World class. The world class automatically gets the same rights to an object that are
given to the nobody class.

� Nobody class. The nobody class only gets those rights an object specifically assigns
to the nobody class.

The basic principle that governs this is that access rights override the absence of
access rights. In other words, a higher class can have more rights than a lower class,

Administering NIS+ Access Rights 129

but not fewer rights. (The one exception to this rule is that if the owner is not a
member of the group, it is possible to give rights to the group class that the owner
does not have.)

How Access Rights Are Assigned and Changed
When you create an NIS+ object, NIS+ assigns that object a default set of access
rights for the owner and group classes. By default, the owner is the NIS+ principal
who creates the object. The default group is the group named in the NIS_GROUP
environment variable. (See “Default Access Rights” on page 136 for details.)

Specifying Different Default Rights
NIS+ provides two different ways to change the default rights that are automatically
assigned to an NIS+ object when it is created.

� The NIS_DEFAULTSenvironment variable. NIS_DEFAULTSstores a set of
security-related default values, one of which is access rights. These default access
rights are the ones automatically assigned to an object when it is created. (See
“Displaying NIS+ Defaults—The nisdefaults Command” on page 141 for
details.)

If the value of the NIS_DEFAULTSenvironment variable is changed, objects
created after the change are assigned the new values. However, previously created
objects are not affected.

� The −D option, which is available with several NIS+ commands. When you use the
−D option as part of the command to create an NIS+ object, it overrides the default
rights specified by the NIS_DEFAULTSenvironment variable and allows you to
explicitly specify an initial set of rights for that object. (See “Specifying Nondefault
Security Values at Creation Time” on page 145 for details.)

Changing Access Rights to an Existing Object
When an NIS+ object is created, it comes into existence with a default set of access
rights (from either the NIS_DEFAULTSenvironment variable or as specified with the
−D option). These default rights can be changed with the

� nischmod command

� nistbladm command for table columns

Table, Column, and Entry Security
NIS+ tables allow you to specify access rights on the table three ways:

130 Solaris Naming Administration Guide ♦ May 1999

� You can specify access rights to the table as a whole

� You can specify access rights to each entry (row) by itself.

� You can specify access rights to each table column individually,

A field is the intersection between a column and an entry (row). All data values are
entered in fields.

These column- and entry level access rights allow you to specify additional access to
individual rows and columns that override table level restrictions, but column and
entry level rights cannot be more restrictive than the table as a whole:

� Table. The table level is the base level. Access rights assigned at the table level
apply to every piece of data in the table unless specifically modified by a column
or entry exception. Thus, the table level rights should be the most restrictive.

Note - Remember that authorization classes concatenate. A higher class gets the
rights assigned to lower classes. See “Concatenation of Access Rights” on page 129

� Column. Column-level rights allow you to grant additional access rights on a
column-by-column basis. For example, suppose the table level granted no access
rights whatsoever to the world and nobody classes. In such a case, no one in those
two classes could read, modify, create, or destroy any data in the table. You could
use column-level rights to override that table level restriction and permit members
of the world class the right to view data in a particular column.

On the other hand, if the table level grants table-wide read rights to the owner and
group classes, you cannot use column-level rights to prevent the group class from
having read rights to that column.

� Entry (row). entry level rights allow you to grant additional access rights on a
row-by-row basis. For example, this allows you to permit individual users to
change entries that apply to them, but not entries that apply to anyone else.

Keep in mind that an entry’s group does not have to be the same as the table’s
group. Tables and entries can have different groups. This means that you can
permit members of a particular group to work with one set of entries while
preventing them from affecting entries belonging to other groups.

Table, Column, Entry Example
Column- or entry level access rights can provide additional access in two ways: by
extending the rights to additional principals or by providing additional rights to the
same principals. Of course, both ways can be combined. Following are some
examples.

Assume a table object granted read rights to the table’s owner:

Administering NIS+ Access Rights 131

TABLE 10–1 Table, Column, Entry Example 1

Nobody Owner Group World

Table Access Rights: —- r— —- —-

This means that the table’s owner could read the contents of the entire table but no
one else could read anything. You could then specify that Entry-2 of the table grant
read rights to the group class:

TABLE 10–2 Table, Column, Entry Example 2

Nobody Owner Group World

Table Access Rights: ---- r--- ---- —-

Entry-2 Access Rights: ---- ---- r--- —-

Although only the owner could read all the contents of the table, any member of the
table’s group could read the contents of that particular entry. Now, assume that a
particular column granted read rights to the world class:

TABLE 10–3 Table, Column, Entry Example 3

Nobody Owner Group World

Table Access Rights: ---- r--- ---- ----

Entry-2 Access Rights: ---- ---- r--- ----

Column-1 Access Rights: ---- ---- ---- r---

Members of the world class could now read that column for all entries in the table
(light shading in Table 10–4). Members of the group class could read everything in
Column-1 (because members of the group class are also members of the world class)
and also all columns of Entry-2 (dark shading in Table 10–4). Neither the world nor
the group classes could read any cells marked *NP* (for Nor Permitted).

132 Solaris Naming Administration Guide ♦ May 1999

TABLE 10–4 Table, Column, Entry Example 4

Col 1 Col 2 Col 2

Entry-1 contents *NP* *NP*

Entry-2 contents contents contents

Entry-3 contents *NP* *NP*

Entry-4 contents *NP* *NP*

Entry-5 contents *NP* *NP*

Rights at Different Levels

This section describes how the four different access rights (read, create, modify, and
destroy) work at the four different access levels (directory, table, column, and entry).

The objects that these various rights and levels act on are summarized in the table
Table 10–5:

TABLE 10–5 Access Rights and Levels and the Objects They Act Upon

Directory Table Column Entry

Read
List directory
contents

View table
contents

View column
contents

View entry
(row) contents

Create

Create new
directory or
table objects

Add new
entries (rows)

Enter new data
values in a
column

Enter new data
values in an
entry (row)

Modify

Move objects
and change
object names

Change data
values
anywhere in
table

Change data
values in a
column

Change data
values in an
entry (row)

Destroy

Delete directory
objects such as
tables

Delete entries
(rows)

Delete data
values in a
column

Delete data
values in an
entry (row)

Administering NIS+ Access Rights 133

Read Rights
� Directory. If you have read rights to a directory, you can list the contents of the

directory.

� Table. If you have read rights to a table, you can view all the data in that table.

� Column. If you have read rights to a column, you can view all the data in that
column.

� Entry. If you have read rights to an entry, you can view all the data in that entry.

Create Rights
� Directory. If you have create rights at the directory level, you can create new

objects in the directory such as new tables.

� Table. If you have create rights at the table level, you can create new entries. (You
cannot add new columns to an existing table regardless of what rights you have.)

� Column. If you have create rights to a column, you can enter new data values in
the fields of that column. You cannot create new columns.

� Entry. If you have create rights to an entry, you can enter new data values in the
fields of that row. (Entry level create rights do not permit you to create new rows.)

Modify Rights
� Directory. If you have modify rights at the directory level, you can move or rename

directory objects.

� Table. If you have modify rights at the table level, you can change any data values
in the table. You can create (add) new rows, but you cannot create new columns. If
an existing field is blank, you can enter new data in it.

� Column. If you have modify rights to a column, you can change the data values in
the fields of that column.

� Entry. If you have modify rights to an entry, you can change the data values in the
fields of that row.

Destroy Rights
� Directory. If you have destroy rights at the directory level, you can destroy existing

objects in the directory such as tables.

� Table. If you have destroy rights at the table level, you can destroy existing entries
(rows) in the table but not columns. You cannot destroy existing columns in a
table: you can only destroy entries.

� Column. If you have destroy rights to a column, you can destroy existing data
values in the fields of that column.

134 Solaris Naming Administration Guide ♦ May 1999

� Entry. If you have destroy rights to an entry, you can destroy existing data values
in the fields of that row.

Where Access Rights Are Stored
An object’s access rights are specified and stored as part of the object’s definition.
This information is not stored in an NIS+ table.

Viewing an NIS+ Object’s Access Rights
The access rights can be viewed by using the niscat command:

niscat -o objectname

Where objectname is the name of the object whose access rights you want to view.

This command returns the following information about an NIS+ object:

� Owner. The single NIS+ principal who has ownership rights. This is usually the
person who created the object, but it could be someone to whom the original
owner transferred ownership rights.

� Group. The object’s NIS+ group.

� Nobody class access rights. The access rights granted to everyone, whether they are
authenticated (have a valid DES credential) or not.

� Owner class access rights. The access rights granted to the object’s owner.

� Group class access rights. The access rights granted to the principals in the object’s
group.

� World class access rights. The access rights granted to all authenticated NIS+
principals.

Access rights for the four authorization classes are displayed as a list of 16
characters, like this:

r---rmcdr---r---

Each character represents a type of access right:

� r represents read rights.

� mrepresents modify rights.

� d represents destroy rights.

� c represents create rights.

� - represents no access rights.

Administering NIS+ Access Rights 135

The first four characters represent the access rights granted to nobody, the next four
to the owner, the next four to the group, and the last four to the world:

Nobody Owner World Group

rmcd rmcd rmcd rmcd

Figure 10–1 Access Rights Display

Note - Unlike UNIX file systems, the first set of rights is for nobody, not for the
owner.

Default Access Rights
When you create an object, NIS+ assigns the object a default owner and group, and a
default set of access rights for all four classes. The default owner is the NIS+
principal who creates the object. The default group is the group named in the
NIS_GROUPenvironment variable. Initially, the default access rights are: I

TABLE 10–6 Default Access Rights

Nobody Owner Group World

- read read read

- modify - -

- create - -

- destroy - -

If you have the NIS_DEFAULTSenvironment variable set, the values specified in
NIS_DEFAULTSwill determine the defaults that are applied to new objects. When
you create an object from the command line, you can use the −D flag to specify
values other than the default values.

136 Solaris Naming Administration Guide ♦ May 1999

How a Server Grants Access Rights to Tables
This section discusses how a server grants access to tables objects, entries, and
columns during each type of operation: read, modify, destroy, and create.

Note - At security level 0, a server enforces no NIS+ access rights and all clients are
granted full access rights to the table object. Security level 0 is only for administrator
setup and testing purposes. Do not use level 0 in any environment where ordinary
users are performing their normal work.

The four factors that a server must consider when deciding whether to grant access
are:

� The type of operation requested by the principal

� The table, entry, or column the principal is trying to access

� The authorization class the principal belongs to for that particular object

� The access rights that the table, entry, or column has assigned to the principal’s
authorization class

After authenticating the principal making the request by making sure the principal
has a valid DES credential, an NIS+ server determines the type of operation and the
object of the request.

� Directory. If the object is a directory or group, the server examines the object’s
definition to see what rights are granted to the four authorization classes,
determines which class the principal belongs to, and then grants or denies the
request based on the principal’s class and the rights assigned to that class.

� Table. If the object is a table, the server examines the table’s definition to see what
table level rights are granted to the four authorization classes, and determines
which class the principal belongs to. If the class to which the principal belongs
does not have table level rights to perform the requested operation, the server
then determines which row or column the operation concerns and determines if
there are corresponding row- or column-level access rights permitting the
principal to perform the requested operation.

Specifying Access Rights in Commands
This section assume an NIS+ environment running at security level 2 (the default
level).

This section describes how to specify access rights, as well as owner, group owner,
and object, when using any of the commands described in this chapter.

Administering NIS+ Access Rights 137

Syntax for Access Rights
This subsection describes the access rights syntax used with the various NIS+
commands that deal with authorization and access rights.

Class, Operator, and Rights Syntax
Access rights, whether specified in an environment variable or a command, are
identified with three types of arguments: class, operator, and right.

� Class. Class refers to the type of NIS+ principal (authorization class) to which the
rights will apply.

TABLE 10–7 Access Rights Syntax—Class

Class Description

n Nobody: all unauthenticated requests

o The owner of the object or table entry

g The group owner of the object or table entry

w World: all authenticated principals

a All: shorthand for owner, group, and world (this is the default)

� Operator. The operator indicates the kind of operation that will be performed with
the rights.

TABLE 10–8 Access Rights Syntax—Operator

Operator Description

+ Adds the access rights specified by right

- Revokes the access rights specified by right

= Explicitly changes the access rights specified by right; in other words, revokes
all existing rights and replaces them with the new access rights.

138 Solaris Naming Administration Guide ♦ May 1999

� Rights. The rights are the access rights themselves. The accepted values for each
are listed below.

TABLE 10–9 Access Rights Syntax—Rights

Right Description

r Reads the object definition or table entry

m Modifies the object definition or table entry

c Creates a table entry or column

d Destroys a table entry or column

You can combine operations on a single command line by separating each operation
from the next with a comma (,).

TABLE 10–10 Class, Operator, and Rights Syntax—Examples

Operations Syntax

Add read access rights to the owner class o+r

Change owner. group, and world classes’ access rights to modify only
from whatever they were before

a=m

Add read and modify rights to the world and nobody classes wn+m

Remove all four rights from the group, world, and nobody classes gwn-rmcd

Add create and destroy rights to the owner class and add read and
modify rights to the world and nobody classes

o+cd,wn+rm

Syntax for Owner and Group
� Owner. To specify an owner, use an NIS+ principal name.

� Group. To specify an NIS+ group, use an NIS+ group name with the domain name
appended.

Administering NIS+ Access Rights 139

Remember that principal names are fully qualified (principalname.domainname).

For owner

principalname

For group

groupname.domainname

Syntax for Objects and Table Entries
Objects and table entries use different syntaxes.

� Objects use simple object names.

� Table entries use indexed names.

For objects

objectname

For table entries

columnname=value], tablename

Note - In this case, the brackets are part of the syntax.

Indexed names can specify more than one column-value pair. If so, the operation
applies only to the entries that match all the column-value pairs. The more
column-value pairs you provide, the more stringent the search.

For example:

140 Solaris Naming Administration Guide ♦ May 1999

TABLE 10–11 Object and Table Entry—Examples

Type Example

Object hosts.org_dir.sales.doc.com.

Table entry ‘[uid=33555],passwd.org_dir.Eng.doc.com.’

Two-value table entry ‘[name=sales,gid=2],group.org_dir.doc.com.’

Columns use a special version of indexed names. Because you can only work on
columns with the nistbladm command, see “The nistbladm Command ” on page
220 for more information.

Displaying NIS+ Defaults—The
nisdefaults Command
The nisdefaults command displays the seven default values currently active in
the namespace. These default values are either

� Preset values supplied by the NIS+ software

� The defaults specified in the NIS_DEFAULTSenvironment variable (if you have
NIS_DEFAULTSvalues set)

Any object that you create on this machine will automatically acquire these default
values unless you override them with the −D option of the command you are using
to create the object.

TABLE 10–12 The Seven NIS+ Default Values and nisdefaults Options

Default Option From Description

Domain −d /etc/defaultdomain Displays the home domain of the workstation from
which the command was entered.

Group −g NIS_GROUP
environment variable

Displays the group that would be assigned to the next
object created from this shell.

Host −h uname −n Displays the workstation’s host name.

Administering NIS+ Access Rights 141

TABLE 10–12 The Seven NIS+ Default Values and nisdefaults Options (continued)

Default Option From Description

Principal −p gethostbyname() Displays the fully qualified user name or host name of
the NIS+ principal who entered the nisdefaults
command.

Access Rights −r NIS_DEFAULTS
environment variable

Displays the access rights that will be assigned to the
next object or entry created from this shell. Format:
----rmcdr---r---

Search path −s NIS_PATH environment
variable

Displays the syntax of the search path, which indicate
the domains that NIS+ will search through when
looking for information. Displays the value of the
NIS_PATH environment variable if it is set.

Time-to-live −t NIS_DEFAULTS
environment variable

Displays the time-to-live that will be assigned to the
next object created from this shell. The default is 12
hours.

All (terse) −a
Displays all seven defaults in terse format.

Verbose −v
Display specified values
in verbose mode.

You can use these options to display all default values or any subset of them:

� To display all values in verbose format, type the nisdefaults command without
arguments.

master% nisdefaults
Principal Name : topadmin.doc.com.
Domain Name : doc.com.
Host Name : rootmaster.doc.com.
Group Name : salesboss
Access Rights : ----rmcdr---r---
Time to live : 12:00:00:00:00
Search Path : doc.com.

� To display all values in terse format, add the −a option.

� To display a subset of the values, use the appropriate options. The values are
displayed in terse mode. For example, to display the rights and search path
defaults in terse mode, type:

142 Solaris Naming Administration Guide ♦ May 1999

rootmaster% nisdefaults -rs
----rmcdr---r---

doc.com.

� To display a subset of the values in verbose mode, add the −v flag.

Setting Default Security Values
This section describes how to perform tasks related to the nisdefaults command,
the NIS_DEFAULTSenvironment variable, and the −D option. The NIS_DEFAULTS
environment variable specifies the following default values:

� Owner

� Group

� Access rights

� Time-to-live.

The values that you set in the NIS_DEFAULTSenvironment variable are the default
values applied to all NIS+ objects that you create using that shell (unless overridden
by using the −D option with the command that creates the object).

You can specify the default values (owner, group, access rights, and time-to-live)
specified with the NIS_DEFAULTSenvironment variable. Once you set the value of
NIS_DEFAULTS, every object you create from that shell will acquire those defaults,
unless you override them by using the −D option when you invoke a command.

Displaying the Value of NIS_DEFAULTS
You can check the setting of an environment variable by using the echo command,
as shown below:

client% echo $NIS_DEFAULTS
owner=butler:group=gamblers:access=o+rmcd

You can also display a general list of the NIS+ defaults active in the namespace by
using the nisdefaults command as described in “Displaying NIS+ Defaults—The
nisdefaults Command” on page 141.

Administering NIS+ Access Rights 143

Changing Defaults
You can change the default access rights, owner, and group, by changing the value of
the NIS_DEFAULTSenvironment variable. Use the environment command that is
appropriate for your shell (setenv for C-shell or $NIS_DEFAULTS=, export for
Bourne and Korn shells) with the following arguments:

� access= right, where right are the access rights using the formats described in
“Specifying Access Rights in Commands” on page 137.

� owner= name, where name is the user name of the owner.

� group= group, where group is the name of the default group

You can combine two or more arguments into one line separated by colons:

−owner= principal-name: −group= group-name

Table 10–13shows some examples:

TABLE 10–13 Changing Defaults—Examples

Tasks Examples

This command grants owner read access
as the default access right.

client% setenv NIS_DEFAULTS access=o+r

This command sets the default owner to
be the user abe whose home

domain is doc.com.

client% setenv NIS_DEFAULTS owner=abe.doc.com.

This command combines the first two
examples on one code line.

client% setenv NIS_DEFAULTS
access=o+r:owner=abe.doc.com.

All objects and entries created from the shell in which you changed the defaults will
have the new values you specified. You cannot specify default settings for a table
column or entry; the columns and entries simply inherit the defaults of the table.

Resetting the Value of NIS_DEFAULTS
You can reset the NIS_DEFAULTSvariable to its original values, by typing the name
of the variable without arguments, using the format appropriate to your shell:

For C shell

client# unsetenv NIS_DEFAULTS

144 Solaris Naming Administration Guide ♦ May 1999

For Bourne or Korn shell

client$ NIS_DEFAULTS=; export NIS_DEFAULTS

Specifying Nondefault Security Values
at Creation Time
You can specify different (that is, nondefault) access rights, owner, and group, any
time that you create an NIS+ object or table entry with any of the following NIS+
commands:

� nismkdir —Creates NIS+ directory objects

� nisaddent —Transfers entries into an NIS+ table

� nistbladm —Creates entries in an NIS+ table

To specify security values other than the default values, insert the −D option into the
syntax of those commands, as described in “Specifying Access Rights in Commands”
on page 137.

As when setting defaults, you can combine two or more arguments into one line.
Remember that column and entry’s owner and group are always the same as the
table, so you cannot override them.

For example, to use the nismkdir command to create a sales.doc.com directory
and override the default access right by granting the owner only read rights you
would type:

client% nismkdir -D access=o+r sales.doc.com

Changing Object and Entry Access
Rights
The nischmod command operates on the access rights of an NIS+ object or table
entry. It does not operate on the access rights of a table column; for columns, use the
nistbladm command with the −D option. For all nischmod operations, you must
already have modify rights to the object or entry.

Administering NIS+ Access Rights 145

Using nischmod to Add Rights
To add rights for an object or entry use:

For object

nischmod class+ right object-name

For table entry

nischmod class+ right [column-name= value], table-name

For example, to add read and modify rights to the group of the sales.doc.com.
directory object you would type.

client% nischmod g+rm sales.doc.com.

For example to add read and modify rights to group for the name=abe entry in the
hosts.org_dir.doc.com. table you would type:

client% nischmod g+rm ’[name=abe],hosts.org_dir.doc.com.’

Using nischmod to Remove Rights
To remove rights for an object or entry use:

For object

nischmod class-right object-name

For entry

nischmod class-right [column-name=value], table-name

For example, to remove create and destroy rights from the group of the
sales.doc.com. directory object you would type:

client% nischmod g-cd sales.doc.com.

For example to remove destroy rights from group for the name=abe entry in the
hosts.org_dir.doc.com. table, you would type:

client% nischmod g-d ’[name=abe],hosts.org_dir.doc.com.’

146 Solaris Naming Administration Guide ♦ May 1999

Specifying Column Access Rights
The nistbladm command performs a variety of operations on NIS+ tables. Most of
these tasks are described in “The nistbladm Command ” on page 220. However,
two of its options, −c and −u, enable you to perform some security-related tasks:

� The −c option. The −c option allows you to specify initial column access rights
when creating a table with the nistbladm command.

� The −u option. The −u option allows you to change column access rights with the
nistbladm command.

Setting Column Rights When Creating a Table
When a table is created, its columns are assigned the same rights as the table object.
These table level, rights are derived from the NIS_DEFAULTSenvironment variable,
or are specified as part of the command that creates the table. You can also use the
nistbladm −c option to specify initial column access rights when creating a table
with nistbladm . To use this option you must have create rights to the directory in
which you will be creating the table. To set column rights when creating a table use:

nistbladm -c type ‘ columname=[flags] [, access]... tablename’

Where:

� type is a character string identifying the kind of table. A table’s type can be
anything you want it to be.

� columnname is the name of the column.

� flags is the type of column. Valid flags are:

� S for searchable

� I for case insensitive

� C for encrypted

� B for binary data
� X for XDR encoded data

� access is the access rights for this column that you specify using the syntax
described in “Specifying Access Rights in Commands” on page 137.

� ... indicates that you can specify multiple columns each of the own type and with
their own set of rights.

� tablename is the fully qualified name of the table you are creating.

Administering NIS+ Access Rights 147

To assign a column its own set of rights at table creation time, append access rights
to each column’s equal sign after the column type and a comma. Separate the
columns with a space:

column=type, rights column=type, rights column=type, rights

The example below creates a table named depts in the doc.com directory, of type
div , with three columns (Name, Site , and Manager), and adds modify rights for
the group to the second and third columns:

rootmaster% nistbladm -c div Name=S Site=S,g+m Manager=S,g+m depts.doc.com.

For more information about the nistbladm and the−c option, see Chapter 14.

Adding Rights to an Existing Table Column
The nistbladm −u option allows you to add additional column access rights to an
existing table column with the nistbladm command. To use this option you must
have modify rights to the table column. To add additional column rights use:

nistbladm -u [column=access,...], tablename

Where:

� column is the name of the column.

� access is the access rights for this column that you specify using the syntax
described in “Specifying Access Rights in Commands” on page 137.

� ... indicates that you can specify rights for multiple columns.

� tablename is the fully qualified name of the table you are creating.

Use one column=access pair for each column whose rights you want to update. To
update multiple columns, separate them with commas and enclose the entire set with
square brackets:

[column=access, column=access, column=access]

The full syntax of this option is described in “The nistbladm Command ” on page
220.

The example below adds read and modify rights to the group for the name and
addr columns in the hosts.org_dir.doc.com. table.

client% nistbladm -u ‘[name=g+rm,addr=g+rm],hosts.org_dir..doc.com.’

148 Solaris Naming Administration Guide ♦ May 1999

Removing Rights to a Table Column
To remove access rights to a column in an NIS+ table, you use the −u option as
described above in “Adding Rights to an Existing Table Column” on page 148 except
that you subtract rights with a minus sign (rather than adding them with a plus sign).

The example below removes group’s read and modify rights to the hostname column
in the hosts.org_dir.doc.com. table.

client% nistbladm -u ’name=g-rm,hosts.org_dir.doc.com.’

Changing Ownership of Objects and
Entries
The nischown command changes the owner of one or more objects or entries. To
use it, you must have modify rights to the object or entry. The nischown command
cannot change the owner of a column, since a table’s columns belong the table’s
owner. To change a column’s owner, you must change the table’s owner.

Changing Object Owner With nischown
To change an object’s owner, use the following syntax:

nischown new-owner object

Where:

� new-owner is the fully qualified user ID of the object’s new owner.

� object is the fully qualified name of the object.

Be sure to append the domain name to both the object name and new owner name.

The example below changes the owner of the hosts table in the doc.com. domain to
the user named lincoln whose home domain is doc.com. :

client% nischown lincoln.doc.com. hosts.org_dir.doc.com.

Changing Table Entry Owner With nischown
The syntax for changing a table entry’s owner uses an indexed entry to identify the
entry, as shown below (this syntax is fully described in):

nischown new-owner [column=value,...], tablename

Administering NIS+ Access Rights 149

Where:

� new-owner is the fully qualified user ID of the object’s new owner.

� column is the name of the column whose value will identify the particular entry
(row) whose owner is to be changed.

� value is the data value that identified the particular entry (row) whose owner is to
be changed.

� ... indicates that you can specify ownership changes for multiple entries.

� tablename is the fully qualified name of the tables containing the entry whose
owner is to be changed.

Be sure to append the domain name to both the new owner name and the table name.

The example below changes the owner of an entry in the hosts table of the
doc.com. domain to takeda whose home domain is doc.com. The entry is the
one whose value in the name column is virginia .

client% nischown takeda.doc.com. ’[name=virginia],hosts.org_dir.doc.com.’

Changing an Object or Entry’s Group
The nischgrp command changes the group of one or more objects or table entries.
To use it, you must have modify rights to the object or entry. The nischgrp
command cannot change the group of a column, since the group assigned to a table’s
columns is the same as the group assigned to the table. To change a column’s group
owner, you must change the table’s group owner.

Changing an Object’s Group With nischgrp
To change an object’s group, use the following syntax:

nischgrp group object

Where:

� group is the fully qualified name of the object’s new group.

� object is the fully qualified name of the object.

Be sure to append the domain name to both the object name and new group name.

The example below changes the group of the hosts table in the doc.com. domain to
admins.doc.com. :

150 Solaris Naming Administration Guide ♦ May 1999

client% nischgrp admins.doc.com. hosts.org_dir.doc.com.

Changing a Table Entry’s Group With nischgrp
The syntax for changing a table entry’s group uses an indexed entry to identify the
entry, as shown below (this syntax is fully described in “Syntax for Objects and Table
Entries ” on page 140):

nischgrp new-group [column=value,...], tablename

Where:

� new-group is the fully qualified name of the object’s new group.

� column is the name of the column whose value will identify the particular entry
(row) whose group is to be changed.

� value is the data value that identified the particular entry (row) whose group is to
be changed.

� tablename is the fully qualified name of the tables containing the entry whose
group is to be changed.

� ... indicates that you can specify group changes for multiple entries.

Be sure to append the domain name to both the new group name and the table name.

The example below changes the group of an entry in the hosts table of the
doc.com. domain to sales.doc.com. The entry is the one whose value in the
host name column is virginia .

client% nischgrp sales.doc.com. ’[name=virginia],hosts.org_dir.doc.com.’

Administering NIS+ Access Rights 151

152 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 11

Administering Passwords

This chapter describes how to use the passwd command from the point of view of
an ordinary user (NIS+ principal) and how an NIS+ administrator manages the
password system.

� “Logging In” on page 154

� “The Login incorrect Message” on page 154

� “The password expired Message” on page 155

� “The will expire Message” on page 155

� “The Permission denied Message ” on page 156

� “Changing Your Password” on page 156

� “Choosing a Password” on page 157

� “nsswitch.conf File Requirements ” on page 159

� “The nispasswd Command” on page 159

� “The yppasswd Command” on page 160

� “The passwd Command ” on page 160

� “The nistbladm Command ” on page 163

� “Related Commands” on page 167

� “Displaying Password Information ” on page 167

� “Changing Passwords ” on page 169

� “Locking a Password ” on page 170

� “Managing Password Aging ” on page 171

� “Forcing Users to Change Passwords ” on page 172

� “Setting Minimum Password Life ” on page 172

� “Setting a Password Age Limit ” on page 172

153

� “Establishing a Warning Period ” on page 174

� “Turning Off Password Aging ” on page 175

� “Password Privilege Expiration” on page 175

� “Specifying Maximum Number of Inactive Days” on page 177

� “Specifying Password Criteria and Defaults” on page 178

� “Password Failure Limits” on page 181

Note - Some NIS+ security tasks can be performed more easily with Solstice
AdminSuite tools if you have them available.

Using Passwords
When logging in to a machine, users must enter both a user name (also known as a
login ID) and a password. Although login IDs are publicly known, passwords must
be kept secret by their owners.

Logging In
Logging in to a system is a two-step process:

1. Type your login ID at the Login: prompt.

2. Type your password at the Password: prompt.

(To maintain password secrecy, your password is not displayed on your screen
when you type it.)

If your login is successful you will see your system’s message of the day (if any)
and then your command-line prompt, windowing system, or normal application.

The Login incorrect Message
The Login incorrect message indicates that:

� You have entered the wrong login ID or the wrong password. This is the most
common cause of the Login incorrect message. Check your spelling and
repeat the process. Note that most systems limit to five the number of
unsuccessful login tries you can make:

154 Solaris Naming Administration Guide ♦ May 1999

� If you exceed a number of tries limit, you will get a
Too many failures - try later message and not be allowed to try again
until a designated time span has passed.

� If you fail to successfully log in within a specified amount of time you will
receive a Too many tries; try again later message, and not be allowed
to try again until a designated time span has passed.

� Another possible cause of the Login incorrect message is that an administrator
has locked your password and you cannot use it until it is unlocked. If you are
sure that you are entering your login ID and password correctly, and you still get
a Login incorrect message, contact your system administrator.

� Another possible cause of the Login incorrect message is that an administrator
has expired your password privileges and you cannot use your password until
your privileges are restored. If you are sure that you are entering your login ID
and password correctly, and you still get a Login incorrect message, contact
your system administrator.

The password expired Message
If you receive a Your password has expired message it means that your
password has reached its age limit and expired. In other words, the password has
been in use for too long and you must choose a new password at this time. (See
“Choosing a Password” on page 157, for criteria that a new password must meet.)

In this case, choosing a new password is a three-step process:

1. Type your old password at the Enter login password (or similar) prompt.

Your keystrokes are not shown on your screen.

2. Type your new password at the Enter new password prompt.

Your keystrokes are not shown on your screen.

3. Type your new password again at the Re-enter new password prompt.

Your keystrokes are not shown on your screen.

The will expire Message
If you receive a Your password will expire in N days message (where N is a
number of days), or a Your password will expire within 24 hours
message, it means that your password will reach its age limit and expire in that
number of days (or hours).

In essence, this message is telling you to change your password now. (See “Changing
Your Password” on page 156.)

Administering Passwords 155

The Permission denied Message
After entering your login ID and password, you may get a Permission denied
message and be returned to the login: prompt. This means that your login attempt
has failed because an administrator has either locked your password, or terminated
your account, or your password privileges have expired. In these situations you
cannot log in until an administrator unlocks your password or reactivates your
account or privileges. Consult your system administrator.

Changing Your Password
To maintain security, you should change your password regularly. (See “Choosing a
Password” on page 157 for password requirements and criteria.)

Note - The passwd command now performs all functions previously performed by
nispasswd . For operations specific to an NIS+ name space, use passwd −r
nisplus .

Changing your password is a four-step process:

1. Run the passwd command at a system prompt.

2. Type your old password at the Enter login password (or similar) prompt.

Your keystrokes are not shown on your screen.

� If you receive a Sorry: less than N days since the last change
message, it means that your old password has not been in use long enough
and you will not be allowed to change it at this time. You are returned to your
system prompt. Consult your system administrator to find out the minimum
number of days a password must be in use before it can be changed.

� If you receive a You may not change this password message, it means that
your network administrator has blocked any change.

3. Type your new password at the Enter new password prompt.

Your keystrokes are not shown on your screen.

At this point the system checks to make sure that your new password meets the
requirements:

� If it does meet the requirements, you are asked to enter it again.

� If your new password does not meet the system requirements, a message is
displayed informing you of the problem. You must then enter a new password
that does meet the requirements.

See “Password Requirements” on page 157 for the requirements a password must
meet.

4. Type your new password again at the Re-enter new password prompt.

156 Solaris Naming Administration Guide ♦ May 1999

Your keystrokes are not shown on your screen.

If your second entry of the new password is not identical to your first entry, you
are prompted to repeat the process.

Note - When changing root’s password, you must always run chkey −p
immediately after changing the password. (See “Changing Root Keys From Root”
on page 110 and “Changing Root Keys From Another Machine” on page 112 for
information on using chkey −p to change root’s keys.) Failure to run chkey −p
after changing root’s password will result in root being unable to properly log in.

Password Change Failures
Some systems limit either the number of failed attempts you can make in changing
your password or the total amount of time you can take to make a successful change.
(These limits are implemented to prevent someone else from changing your
password by guessing your current password.)

If you (or someone posing as you) fails to successfully log in or change your
password within the specified number of tries or time limit, you will get a
Too many failures - try later or Too many tries: try again later
message. You will not be allowed to make any more attempts until a certain amount
of time has passed. (That amount of time is set by your administrator.)

Choosing a Password
Many breaches of computer security involve guessing another user’s password.
While the passwd command enforces some criteria for making sure the password is
hard to guess, a clever person can sometimes figure out a password just by knowing
something about the user. Thus, a good password is one that is easy for you to
remember but hard for someone else to guess. A bad password is one that is so hard
for you to remember that you have to write it down (which you are not supposed to
do), or that is easy for someone who knows about you to guess.

Password Requirements
A password must meet the following requirements:

� Length. By default, a password must have at least six characters. Only the first
eight characters are significant. (In other words, you can have a password that is
longer than eight characters, but the system only checks the first eight.) Because
the minimum length of a password can be changed by a system administrator, it
may be different on your system.

Administering Passwords 157

� Characters. A password must contain at least two letters (either upper- or
lower-case) and at least one numeral or symbol such as @,#,%. For example, you
can use dog#food or dog2food as a password, but you cannot use dogfood .

� Not your login ID. A password cannot be the same as your login ID, nor can it be a
rearrangement of the letters and characters of your login ID. (For the purpose of
this criteria, upper and lower case letters are considered to be the same.) For
example, if your login ID is Claire2 you cannot have e2clair as your
password.

� Different from old password. Your new password must differ from your old one by
at least three characters. (For the purpose of this criterion, upper- and lower-case
letters are considered to be the same.) For example, if your current password is
Dog#fooD you can change it to dog#Meat but you cannot change it to daT#Food .

Bad Choices for Passwords
Bad choices for passwords include:

� Any password based on your name

� Names of family members or pets

� Car license numbers

� Telephone numbers

� Social Security numbers

� Employee numbers

� Names related to a hobby or interest

� Seasonal themes, such as Santa in December

� Any word that is in a standard dictionary

Good Choices for Passwords
Good choices for passwords include:

� Phrases plus numbers or symbols (beam#meup)

� Nonsense words made up of the first letters of every word in a phrase plus a
number or symbol (swotrb7 for SomeWhere Over The RainBow)

� Words with numbers, or symbols substituted for letters (sn00py for snoopy)

158 Solaris Naming Administration Guide ♦ May 1999

Administering Passwords
This section describes how to administer passwords in an NIS+ namespace. This
section assumes that you have an adequate understanding of the NIS+ security
system in general, and in particular of the role that login passwords play in that
system (see Chapter 6, for this information).

Note - The passwd command now performs all functions previously performed by
nispasswd . For operations specific to an NIS+ namespace, use passwd −r nisplus .

nsswitch.conf File Requirements
In order to properly implement the passwd command and password aging on your
network, the passwd entry of the nsswitch.conf file on every machine must be
correct. This entry determines where the passwd command will go for password
information and where it will update password information.

Only five passwd configurations are permitted:

� passwd: files

� passwd: files nis

� passwd: files nisplus

� passwd: compat

� passwd: compat passwd_compat: nisplus

Caution - All of the nsswitch.conf files on all of your network’s workstations
must use one of the passwd configurations shown above. If you configure the
passwd entry in any other way, users may not be able to log in.

The nispasswd Command
All functions previously performed by the nispasswd command are now performed
by the passwd command. When issuing commands from the command line, you
should use passwd , not nispasswd .

(The nispasswd command is still retained with all of its functionality for the
purpose of backward compatibility.)

Administering Passwords 159

The yppasswd Command
All functions previously performed by the yppasswd command are now performed
by the passwd command. When issuing commands from the command line, you
should use passwd , not yppasswd .

(The yppasswd is still retained with all of its functionality for the purpose of
backward compatibility.)

The passwd Command
The passwd command performs various operations regarding passwords. The
passwd command replaces the nispasswd command. You should use the passwd
command for all activities which used to be performed with the nispasswd
command. (See the passwd command man page for a complete description of all
passwd flags, options, and arguments.)

The passwd command allows users to perform the following operations:

� Change their passwords

� List their password information

Administrators can use the passwd command to perform the following operations:

� Force users to change their passwords the next time the log in

� Lock a user’s password (prevent it from being used)

� Set a minimum number of days before a user can change passwords

� Specified when a user is warned to change passwords

� Set a maximum number of days a password can be used without being changed

passwd and the nsswitch.conf File
The name service switch determines where the passwd command (and other
commands) obtains and stores password information. If the passwd entry of the
applicable nsswitch.conf file points to:

� nisplus . Password information will be obtained, modified, and stored in the
passwd and cred tables of the appropriate domain.

� nis . Password information will be obtained, modified, and stored in passwd
maps.

� files . Password information will be obtained, modified, and stored in the
/etc/passwd and /etc/shadow files.

160 Solaris Naming Administration Guide ♦ May 1999

The passwd −r Option
When you run the passwd command with the −r nisplus , −r nis , or −r files
arguments, those options override the nsswitch.conf file setting. You will be
warned that this is the case. If you continue, the −r option will cause the passwd
command to ignore the nsswitch.conf file sequence and update the information
in the password information storage location pointed to by the −r flag.

For example, if the passwd entry in the applicable nsswitch.conf file reads:

passwd: files nisplus

files is the first (primary) source, and passwd run without the −r option will get
its password information from the /etc/passwd file. If you run the command with
the −r nisplus option, passwd will get its information from the appropriate NIS+
passwd table and make its changes to that table, not to the /etc/passwd file.

The −r option should only be used when you cannot use the nsswitch.conf file
because the search sequence is wrong. For example, when you need to update
password information that is stored in two places, you can use the order specified in
the nsswitch.conf file for the first one, but for the second one you have to force
the use of the secondary or tertiary source.

The message:

Your specified repository is not defined in the nsswitch file!

indicates that your change will be made to the password information in the
repository specified by the −r option, but that change will not affect anyone until the
nsswitch.conf file is changed to point to that repository. For example, suppose the
nsswitch.conf file reads passwd: files nis and you use the −r nisplus
option to establish password-aging limits in an NIS+ passwd table. Those
password-aging rules will sit in that table unused because the nsswitch.conf file
is directing everyone to other places for their password information.

The passwd Command and “NIS+ Environment”
In this chapter, the phrase NIS+ environment refers to situations where the passwd
entry of the applicable nsswitch.conf file is set to nisplus , or the passwd
command is run with the −r nisplus argument.

The passwd Command and Credentials
When run in an NIS+ environment (see above), the passwd command is designed to
function with or without credentials. Users without credentials are limited to
changing their own password. Other password operations can only be performed by
users who have credentials (are authenticated) and who have the necessary access
rights (are authorized).

Administering Passwords 161

The passwd Command and Permissions
In this discussion of authorization and permissions, it is assumed that everyone
referred to has the proper credentials.

By default, in a normal NIS+ environment the owner of the passwd table can change
password information at any time and without constraints. In other words, the
owner of the passwd table is normally granted full read, modify, create, and destroy
authorization (permission) for that table. An owner can also:

� Assign table ownership to someone else with the nischown command.

� Grant some or all of read, modify, create, and destroy rights to the table’s group,
or even to the world or nobody class. (Of course, granting such rights to world or
nobody seriously weakens NIS+ security.)

� Change the permissions granted to any class with the nisdefaults , nischmod ,
or nistbladm commands.

Note - Regardless of what permissions they have, everyone in the world, and nobody
classes are forced to comply with password-aging constraints. In other words, they
cannot change a password for themselves or anyone else unless that password has
aged past its minimum. Nor can members of the group, world, and nobody classes
avoid having to change their own passwords when the age limit has been reached.
However, age constraints do not apply to the owner of the passwd table.

To use the passwd command in an NIS+ environment, you must have the required
authorization (access rights) for the operation:

TABLE 11–1 Access Rights for passwd Command

This Operation Requires These Rights To This Object

Displaying information read passwd table entry

Changing Information modify passwd table entry

Adding New Information modify passwd table

The passwd Command and Keys
If you use passwd in an NIS+ environment to change a principal’s password, it tries
to update the principal’s private (secret) key in the cred table.

� If you have modify rights to the DES entry in the cred table and if the principal’s
login and Secure RPC passwords are the same, passwd will update the private
key in the cred table.

162 Solaris Naming Administration Guide ♦ May 1999

� If you do not have modify rights to the DES entry in the cred table or if the
principal’s login and Secure RPC passwords are not the same, the passwd
command will change the password, but not change the private key.

If you do not have modify rights to the DES entry, it means that the private key in
the cred table will have been formed with a password that is now different from
the one stored in the passwd table. In this case, the user will have to change keys
with the chkey command or run keylogin after each login.

The passwd Command and Other Domains
To operate on the passwd table of another domain, use:

passwd [options] -D domainname

The nistbladm Command
The nistbladm command allows you to create, change, and display information
about any NIS+ table, including the passwd table.

Caution - To perform password operations using the nistbladm command you
must apply nistbladm to the shadow column of the passwd table. Applying
nistbladm to the shadow column is complex and tricky. Therefore, you should not
use the nistbladm command for any operation that can more easily be performed
by the passwd command or by using the AdminTool or Solstice AdminSuite tools.

You should use the passwd command or Solstice AdminSuite tools to perform the
following operations:

� Changing a password

� Setting the maximum period that a password can be used (password aging).

� Setting the minimum period that a password must be used.

� Setting the password warning period.

� Turning off password aging

It is possible to use the nistbladm command to:

� Create new passwd table entries

� Delete an existing entry

� Change the UID and GID fields in the passwd table

� Change access rights and other security-related attributes of the passwd table

� Set expiration and inactivity periods for a user’s account (see “Password Privilege
Expiration” on page 175 and “Specifying Maximum Number of Inactive Days” on
page 177.)

Administering Passwords 163

nistbladm and Shadow Column Fields
You use the nistbladm command to set password parameters by specifying the
values of the different fields in the shadow column. These fields are entered in the
format:

nistbladm -m shadow= n1: n2: n3: n4: n5: n6: n7 [name= login],passwd.org_dir

Lastchange Min Max W arn Inactive Expire Unused

Where:

� N1 Lastchange. The date of the last password change expressed as a number of
days since January 1, 1970. The value in this field is automatically updated each
time the user changes passwords. (See “nistbladm And the Number of Days” on
page 166 for important information regarding the number of days.) If the field is
blank, or contains a zero, it indicates that there has not been any change in the
past.

Note that the number of days in the lastchange field is the base from which other
fields and operations are calculated. Thus, an incorrect change in this field could
have unintended consequence in regards to minimum, maximum, warning, and
inactive time periods.

� N2 Min. The minimum number of days that must pass since the last time the
password was changed before the user can change passwords again. For example,
if the value in the lastchange field is 9201 (that is, 9201 days since 1/1/70) and the
value in the min field is 8, the user is unable to change passwords until after day
9209. See “Setting Minimum Password Life ” on page 172 for additional
information on password minimums.

Where min is one of the following values:

� Zero (0). A value of zero in this field (or a blank space) means that there is no
minimum period

� Greater than zero. Any number greater than zero sets that number of days as the
minimum password life.

� Greater than max. A value in this field that is greater than the value in the max
field prevents the user from ever changing passwords. The message:
You may not change this password is displayed when the user attempts
to change passwords.

� N3 Max. The maximum number of days that can pass since the last time the
password was changed. Once this maximum number of days is exceeded, the user
is forced to choose a new password the next time the user logs in. For example, if
the value in the lastchange field is 9201 and the value in the max field is 30, after
day 9231 (figured 9201+30=9231), the user is forced to choose a new password at
the next login. See “Setting a Password Age Limit ” on page 172 for additional
information on password maximums.

Where max is one of the following values:

164 Solaris Naming Administration Guide ♦ May 1999

� Zero (0). A value of zero (0) forces the user to change passwords the next time
the user logs in, and it then turns off password aging.

� Greater than zero. Any number greater than zero sets that number of days before
the password must be changed.

� Minus one (-1). A value of minus one (-1) turns off password aging. In other
words, entering passwd -x -1 username cancels any previous password aging
applied to that user. A blank space in the field is treated as if it were a minus
one.

� N4 Warn. The number of days before a password reaches its maximum that the
user is warned to change passwords. For example, suppose the value in the
lastchange field is 9201, the value in the max field is 30, and the value in the warn
field is 5. Then after day 9226 (figured 9201+30-5=9226) the user starts receiving
“change your password” type warnings at each longing time. See “Establishing a
Warning Period ” on page 174 for additional information on password warning
times.

Where warn is one of the following values:

� Zero (0). No warning period.

� Greater than zero. A value of zero (0) sets the warning period to that number of
days.

� N5 Inactive. The maximum number of days between logins. If this maximum is
exceeded, the user is not allowed to log in. For example, if the value of this field is
6, and the user does not log in for six days, on the seventh day the user is no
longer allowed to log in. See “Specifying Maximum Number of Inactive Days” on
page 177 for additional information on account inactivity.

Where inactive is one of the following values:

� Minus one (-1). A value of minus one (-1) turns off the inactivity feature. The
user can be inactive for any number of days without losing login privileges.
This is the default.

� Greater than zero. A value greater than zero sets the maximum inactive period
to that number of days.

� N6 Expire. The date on which a password expires, expressed as a number of days
since January 1, 1970. After this date, the user can no longer log in. For example, if
this field is set to 9739 (September 1, 1995) on September 2, 1995 GMT, the user
will not be able to login and will receive a Login incorrect message after each
try. See “Password Privilege Expiration” on page 175 for additional information on
password expiration.

Where expire is one of the following values:

Administering Passwords 165

� Minus one (-1). A value of minus one (-1) turns off the expiration feature. If a
user’s password has already expired, changing this value to -1 restores it. If
you do not want to set any expiration date, type a -1 in this field.

� Greater than zero. A value greater than zero sets the expiration date to that
number of days since 1/1/70. If you enter today’s date or earlier, you
immediately deactivate the users password.

� N7 Unused. This field is not currently used. Values entered in this field will be
ignored.

� Login is the user’s login ID

Caution - When using nistbladm on the shadow column of the password table, all
of the numeric fields must contain appropriate values. You cannot leave a field
blank, or enter a zero, as a no change placeholder.

For example, to specify that the user amy last changed her password on day 9246
(May 1, 1995), cannot change her password until it has been in use for 7 days, must
change her password after 30 days, will be warned to change her password after the
25th day, must not remain inactive more than 15 days, and has an account that will
expire on day number 9255, you would type:

nistbladm And the Number of Days
Most password aging parameters are expressed in number of days. The following
principles and rules apply:

� Days are counted from January 1, 1970. That is day zero. January 2, 1970, is day 1.

� NIS+ uses Greenwich mean time (GMT) in figuring and counting days. In other
words, the day count changes at midnight GMT.

� When you specify a number of days, you must use a whole number. You cannot
use fractions of days.

� When the number of days is used to specify some action, such as locking a
password, the change takes effect on the day. For example, if you specify that a
user’s password privilege expires on day 9125 (January 2, 1995), that is the last
day that the user can use the password. On the next day, the user can no longer
use the password.

Values are entered in both the lastchange the expire fields as a number of days since
January 1, 1970. For example:

166 Solaris Naming Administration Guide ♦ May 1999

TABLE 11–2 Number of Days Since 1/1/70

Date Day Number

January 1, 1970 0

January 2, 1970 1

January 2, 1971 365

January 1, 1997 9863

Related Commands
The passwd and nistbladm commands provide capabilities that are similar to
those offered by other commands. Table 11–3 summarizes their differences.

TABLE 11–3 Related Commands

Command Description

yppasswd Is now linked to the passwd command. Using yppasswd simply
invokes the passwd command.

nispasswd Is now linked to the passwd command. Using nispasswd simply
invokes the passwd command.

niscat Can be used to display the contents of the passwd table.

Displaying Password Information
You can use the passwd command to display password information about all users
in a domain or about one particular user:

For your password information

passwd -s

For all users in current domain

passwd -s -a

Administering Passwords 167

For a particular user

passwd -s username

Only the entries and columns for which you have read permission will be displayed.
Entries are displayed with the following format:

� Without password aging: username status

� With password aging: username status mm/dd/yy min max warn expire inactive

TABLE 11–4 NIS+ Password Display Format

Field Description For Further Information

username The user’s login name.

status The user’s password status. PS indicates the account has
a password. LK indicates the password is locked. NP
indicates the account has no password.

See “Locking a Password ” on
page 170.

mm/dd/yy The date, based on Greenwich mean time, that the
user’s password was last changed.

min The minimum number of days since the last change that
must pass before the password can be changed again.

See “Setting Minimum
Password Life ” on page 172.

max The maximum number of days the password can be
used without having to change it.

See “Setting a Password Age
Limit ” on page 172.

warn The number of days’ notice that users are given before
their passwords have to be changed.

See “Establishing a Warning
Period ” on page 174.

expire A date on which users loose the ability to log in to their
accounts.

See “Password Privilege
Expiration” on page 175.

inactive A limit on the number of days that an account can go
without being logged in to. Once that limit is passed
without a log in users can no longer access their
accounts.

See “Specifying Maximum
Number of Inactive Days” on
page 177.

To display entries from a passwd table in another domain, use the −D option:

For all users in another domain

passwd -s -a -D domainname

For a particular user

168 Solaris Naming Administration Guide ♦ May 1999

passwd -s -D domainname username

Changing Passwords
New passwords must meet the criteria described in “Password Requirements” on
page 157.

Changing Your Own Password
To change your password, type

station1% passwd

You will be prompted for your old password and then the new password and then
the new password a second time to confirm it.

Changing Someone Else’s Password
To change someone else’ password, use:

To change another user’s password in the same domain

passwd username

To change another user’s password in a different domain

passwd -D domainname username

When using the passwd command in an NIS+ environment (see “The passwd
Command and “NIS+ Environment” ” on page 161) to change someone else’s
password you must have modify rights to that user’s entry in the passwd table (this
usually means that you are a member of the group for the passwd table and the
group has modify rights). You do not have to enter either the user’s old password or
your password. You will be prompted to enter the new password twice to make sure
that they match. If they do not match, you will be prompted to enter them again.

Changing Root’s Password
When changing root’s password, you must always run chkey −p immediately after
changing the password with the passwd command. Failure to run chkey −p after
changing root’s password will result in root being unable to properly log in.

To change a root password, follow these steps:

1. Log in as root.

Administering Passwords 169

2. Change root’s password using passwd .

Do not use nispasswd .

3. Run chkey −p.

You must use the −p option.

Locking a Password
When operating in an NIS+ environment (see “The passwd Command and “NIS+
Environment” ” on page 161), an administrator (a group member) with modify rights
to a user’s entry in the passwd table can use the passwd command to lock a
password. An account with a locked password cannot be used. When a password is
locked, the user will receive a Login incorrect message after each login attempt.

Keep in mind that locked passwords have no effect on users who are already logged
in. A locked password only prevents users from performing those operations that
require giving a password such as login , rlogin, ftp , or telnet .

Note also that if a user with a locked password is already logged in, and that user
uses the passwd command to change passwords, the lock is broken.

You can use this feature to:

� Temporarily lock a user’s password while that user is on vacation or leave. This
prevents anyone from logging in as the absent user.

� Immediately lock one or more user passwords in the case of suspected security
problem.

� Quickly lock a dismissed employee out of the system. This is quicker and easier
than eliminating that user’s account and is an easy way of preserving any data
stored in that account.

� If you have assigned passwords to UNIX processes, you can lock those passwords.
This allows the process to run, but prevents anyone from logging in as those
processes even if they know the process password. (In most cases, processes
would not be set up as NIS+ principals, but would maintain their password
information in /etc files. In such a case you would have to run the passwd
command in files mode to lock /etc stored passwords.)

To lock a password, use:

passwd -l username

Unlocking a Password
To unlock a user’s password, you simply change it. You can “change” it back to the
exact same password that it was when it was locked. Or you can change it to
something new.

170 Solaris Naming Administration Guide ♦ May 1999

For example, to unlock jody ’s password, you would enter:

station1% passwd jody

Managing Password Aging
Password aging is a mechanism you can use to force users to periodically change
their passwords.

Password aging allows you to:

� Force a user to choose a new password the next time the user logs in. (See
“Forcing Users to Change Passwords ” on page 172 for details.)

� Specify a maximum number of days that a password can be used before it has to
be changed. (See “Setting a Password Age Limit ” on page 172 for details.)

� Specify a minimum number of days that a password has to be in existence before
it can be changed. (See “Setting Minimum Password Life ” on page 172 for details.)

� Specify that a warning message be displayed whenever a user logs in a specified
number of days before the user’s password time limit is reached. (See
“Establishing a Warning Period ” on page 174 for details.)

� Specify a maximum number of days that an account can be inactive. If that
number of days pass without the user logging in to the account, the user’s
password will be locked. (See “Specifying Maximum Number of Inactive Days” on
page 177 for details.)

� Specify an absolute date after which a user’s password cannot be used, thus
denying the user the ability to log on to the system. (See “Password Privilege
Expiration” on page 175 for details.)

Keep in mind that users who are already logged in when the various maximums or
dates are reached are not affected by the above features. They can continue to work
as normal.

Password aging limitations and activities are only activated when a user logs in or
performs one of the following operations:

� login

� rlogin

� telnet

� ftp

These password aging parameters are applied on user-by-user basis. You can have
different password aging requirements for different users. (You can also set general
default password aging parameters as described in “Managing Password Aging ” on
page 171.)

Administering Passwords 171

Forcing Users to Change Passwords
There are two ways to force a user to change passwords the next time the user logs in:

Force change keeping password aging rules in effect

passwd -f username

Force change and turn off password aging rules

passwd -x 0 username

Setting a Password Age Limit
The −max argument to the passwd command sets an age limit for the current
password. In other words, it specifies the number of days that a password remains
valid. After that number of days, a new password must be chosen by the user. Once
the maximum number of days have passed, the next time the user tries to login with
the old password a Your password has been expired for too long
message is displayed and the user is forced to choose a new password in order to
finish logging in to the system.

The max argument uses the following format:

passwd -x max username

Where:

� username is the login ID of the user

� max is one of the following values:

� Greater than zero. Any number greater than zero sets that number of days before
the password must be changed.

� Zero (0). A value of zero (0) forces the user to change passwords the next time
the user logs in, and it then turns off password aging.

� Minus one (-1). A value of minus one (-1) turns off password aging. In other
words, entering passwd -x -1 username cancels any previous password aging
applied to that user.

For example, to force the user schweik to change passwords every 45 days, you
would type the command:

station1% passwd -x 45 schweik

Setting Minimum Password Life
The min argument to the passwd command specifies the number of days that must
pass before a user can change passwords. If a user tries to change passwords before

172 Solaris Naming Administration Guide ♦ May 1999

the minimum number of days has passed, a
Sorry less than N days since the last change message is displayed.

The min argument uses the following format:

passwd -x max -n min username

Where:

� username is the login ID of the user

� max is the maximum number of days a password is valid as described in the
section above

� min is the minimum number of days that must pass before the password can be
changed.

For example, to force the user eponine to change passwords every 45 days, and
prevent him from changing it for the first 7 days you would type the command:

station1% passwd -x 45 -n 7 eponine

The following rules apply to the min argument:

� You do not have to use a min argument or specify a minimum number of days
before a password can be changed.

� If you do use the min argument, it must always be used in conjunction with the
−max argument. In other words, in order to set a minimum value you must also
set a maximum value.

� If you set min to be greater than max, the user is unable to change passwords at
all. For example, the command passwd -x 7 -n 8 prevents the user from
changing passwords. If the user tries to change passwords, the
You may not change this password message is displayed. Setting the min
value greater than the max value has two effects:

� The user is unable to change password. In this case, only someone with
administer privileges could change the password. For example, in situations
where multiple users share a common group password, setting the min value
for that password greater than the max value would prevent any individual
user from changing the group password.

� The password is only valid for the length of time set by the max value, but the
user cannot change it because the min value is greater than the max value.
Thus, there is no way for the user to prevent the password from becoming
invalid at the expiration of the max time period. In effect, this prevents the user
from logging in after the max time period unless an administrator intervenes.

Administering Passwords 173

Establishing a Warning Period
The warn argument to the passwd command specifies the number of days before a
password reaches its age limit that users will start to seeing a
Your password will expire in N days message (where N is the number of
days) when they log in.

For example, if a user’s password has a maximum life of 30 days (set with the −max
argument) and the warn value is set to 7 days, when the user logs in on the 24th day
(one day past the warn value) the warning message
Your password will expire in 7 days is displayed. When the user logs in
on the 25th day the warning message Your password will expire in 6 days
is displayed.

Keep in mind that the warning message is not sent by Email or displayed in a user’s
console window. It is displayed only when the user logs in. If the user does not log
in during this period, no warning message is given.

Keep in mind that the warn value is relative to the max value. In other words, it is
figured backwards from the deadline set by the max value. Thus, if the warn value is
set to 14 days, the Your password will expire in N days message will begin
to be displayed two weeks before the password reaches its age limit and must be
changed.

Because the warn value is figured relative to the max value, it only works if a max
value is in place. If there is no max value, warn values are meaningless and are
ignored by the system.

The warn argument uses the following format:

passwd -x max -w warn username

Where:

� username is the login ID of the user.

� max is the maximum number of days a password is valid as described on “Setting
a Password Age Limit ” on page 172.

� warn is the number of days before the password reaches its age limit that the
warning message will begin to be displayed.

For example, to force the user nilovna to change passwords every 45 days, and
display a warning message 5 days before the password reaches its age limit you
would type the command:

station1% passwd -x 45 -w 5 nilovna

The following rules apply to the warn argument:

� You do not have to use the warn argument or specify a warning message. If no
warn value is set, no warning message is displayed prior to a password reaching
its age limit.

174 Solaris Naming Administration Guide ♦ May 1999

� If you do use the warn argument, it must always be used in conjunction with the
max argument. In other words, in order to set a warning value you must also set a
maximum value.

Note - You can also use Solstice AdminSuite to set a warn value for a user’s
password.

Turning Off Password Aging
There are two ways to turn off password aging for a given user:

Turn off aging while allowing user to retain current password

passwd -x -1 username

Force user to change password at next login, and then turn off aging

passwd -x 0 username

This sets the max value to either zero or -1 (see “Setting a Password Age Limit ” on
page 172 for more information on this value).

For example, to force the user mendez to change passwords the next time he logs in
and then turn off password aging you would type the command:

station% passwd -x 0 mendez

Note - You can also use Solstice AdminSuite to set this parameter for a user’s
password.

You can also use the nistbladm command to set this value. For example, to turn off
password aging for the user otsu and allow her to continue using her current
password, you would type:

station1% nistbladm -m ‘shadow=0:0:-1:0:0:0:0’ [name=otsu],passwd.org_dir

For additional information on using the nistbladm command, see “The nistbladm
Command ” on page 163.

Password Privilege Expiration
You can set a specific date on which a user’s password privileges expires. When a
user’s password privilege expires, that user can no longer have a valid password at
all. In effect, this locks the user out of the system after the given date because after
that date the user can no longer log in.

Administering Passwords 175

For example, if you specify an expire date of December 31, 1997, for a user named
pete, on January 1, 1998 he will not be able to log in under that user ID regardless of
what password he uses. After each login attempt he will receive a
Login incorrect message.

Password Aging versus Expiration
Expiration of a user’s password privilege is not the same as password aging.

� Password aging. A password that has not been changed for longer than the aging
time limit is sometimes referred to as an expired password. But that password can
still be used to log in one more time. As part of that last login process the user is
forced to choose a new password.

� Expiration of password privilege. When a user’s password privilege expires, the user
cannot log in at all with any password.) In other words, it is the user’s permission
to log in to the network that has expired.

Setting an Expiration Date
Password privilege expiration dates only take effect when the user logs in. If a user
is already logged in, the expiration date has no affect until the user logs out or tries to
use rlogin or telnet to connect to another machine at which time the user will
not be able to log in again. Thus, if you are going to implement password privilege
expiration dates, you should require your users to log out at the end of each day’s
work session.

Note - If you have Solstice AdminSuite tools available, do not use nistbladm to set
an expiration date. Use Solstice AdminSuite tools because they are easier to use and
provide less chance for error.

To set an expiration date with the nistbladm command:

nistbladm -m ‘shadow= n:n:n:n:n:n6:n’ [name= login],passwd.org_dir

Where:

� login is the user’s login ID

� n indicates the values in the other fields of the shadow column.

� n6 is the date on which the user’s password privilege expires. This date is entered
as a number of days since January 1, 1970 (see Table 11–2). n6 can be one of the
following values:

� Minus one (-1). A value of minus one (-1) turns off the expiration feature. If a
user’s password has already expired, changing this value to -1 restores
(un-expires) it. If you do not want to set any expiration date, type −1 in this
field.

176 Solaris Naming Administration Guide ♦ May 1999

� Greater than zero. A value greater than zero sets the expiration date to that
number of days since 1/1/70. If you enter today’s date or earlier, you
immediately expire the user’s password.

For example, to specify an expiration date for the user pete of December 31, 1995
you would type:

station1% nistbladm -m ‘shadow =n:n:n:n:n:9493: n’ [name=pete],passwd.org_dir

Caution - All of the fields must be filled in with valid values.

Turning Off Password Privilege Expiration
To turn off or deactivate password privilege expiration, you must use the
nistbladm command to place a -1 in this field. For example, to turn off privilege
expiration for the user huck, you would type:

station1% nistbladm -m ‘shadow= n:n:n:n:n:-1: n’ [name=huck],passwd.org_dir

Or you can use the nistbladm command reset the expiration date to some day in
the future by entering a new number of days in the n6 field.

Specifying Maximum Number of Inactive Days
You can set a maximum number of days that a user can go without logging in on a
given machine. Once that number of days passes without the user logging in, that
machine will no longer allow that user to log in. In this situation, the user will
receive a Login incorrect message after each login attempt.

This feature is tracked on a machine-by-machine basis, not a network-wide basis.
That is, in an NIS+ environment, you specify the number of days a user can go
without logging in by placing an entry for that user in the passwd table of the user’s
home domain. That number applies for that user on all machines on the network.

For example, suppose you specify a maximum inactivity period of 10 days for the
user sam. On January 1, sam logs in to both machine-A and machine-B, and then
logs off both machines. Four days later on January 4, sam logs in on machine-B and
then logs out. Nine days after that on January 13, sam can still log in to machine-B
because only 9 days have elapsed since the last time he logged in on that machine,
but he can no longer log in to machine-A because thirteen days have passed since his
last log in on that machine.

Keep in mind that an inactivity maximum cannot apply to a machine the user has
never logged in to. No matter what inactivity maximum has been specified or how
long it has been since the user has logged in to some other machine, the user can
always log in to a machine that the user has never logged in to before.

Administering Passwords 177

Caution - Do not set inactivity maximums unless your users are instructed to log
out at the end of each workday. The inactivity feature only relates to logins; it does
not check for any other type of system use. If a user logs in and then leaves the
system up and running at the end of each day, that user will soon pass the inactivity
maximum because there has been no login for many days. When that user finally
does reboot or log out, he or she won’t be able to log in.

Note - If you have Solstice AdminSuite tools available, do not use nistbladm to set
an inactivity maximum. Use Solstice AdminSuite tools because they are easier to use
and provide less chance for error.

To set a login inactivity maximum, you must use the nistbladm command in the
format:

nistbladm -m ‘shadow= n:n:n:n:n5:n:n’ [name= login],passwd.org_dir

Where:

� login is the user’s login ID

� n indicates the values in the other fields of the shadow column.

� n5 is the number of days the user is allowed to go between logins. Inactive can be
one of the following values:

� Minus one (-1). A value of minus one (-1) turns off the inactivity feature. The
user can be inactive for any number of days without losing login privileges.
This is the default.

� Greater than zero. A value greater than zero sets the maximum inactive period
to that number of days.

For example, to specify that the user sam must log in at least once every seven days,
you would type:

station1% nistbladm -m ‘shadow= n:n:n:n:n:7: n:n’ [name=sam],passwd.org_dir

To clear an inactivity maximum and allow a user who has been prevented from
logging in to log in again, use nistbladm to set the inactivity value to -1.

Specifying Password Criteria and Defaults
The following subsections describe various password-related defaults and general
criteria that you can specify.

178 Solaris Naming Administration Guide ♦ May 1999

The /etc/defaults/passwd File
The /etc/defaults/passwd file is used to set four general password defaults for
users whose nsswitch.conf file points to files . The defaults set by the
/etc/defaults/passwd file apply only to those users whose operative password
information is taken from /etc files; they do not apply to anyone using either NIS
maps or NIS+ tables. An /etc/defaults/passwd file on an NIS+ server only
affects local users who happen to be obtaining their password information from
those local files. An /etc/defaults/passwd file on an NIS+ server has no effect
on the NIS+ environment or users whose nsswitch.conf file points to either nis
or nisplus .

The four general password defaults governed by the /etc/defaults/passwd file
are:

� Maximum number of weeks the password is valid

� Minimum number of weeks the password is valid

� The number of weeks before the password becomes invalid that the user is warned

� The minimum number of characters that a password must contain

The following principles apply to defaults set with an /etc/defaults/passwd file:

� For users who obtain password information from local /etc files, individual
password aging maximums, minimums and warnings set by the password
command or Solstice AdminSuite or AdminTool override any
/etc/defaults/passwd defaults. In other words, defaults set in the
/etc/defaults/passwd file are not only applied to those users who do not
have corresponding individual settings in their entries in their passwd table.

� Except for password length, all the /etc/defaults/passwd file defaults are
expressed as a number of weeks. (Remember that individual password aging times
are expressed as a number of days.)

� The MAXWEEKS, MINWEEKS, and WARNWEEKSdefaults are all counted forward from
the date of the user’s last password change. (Remember that individual warn values
are counted backwards from the maximum date.)

By default, /etc/defaults/passwd files already contain the entries:

MAXWEEKS=
MINWEEKS=
PASSLENGTH=

To implement an entry, simply type the appropriate number after the equal sign.
Entries that do not have a number after the equal sign are inactive and have no affect
on any user. Thus, to set a MAXWEEKSdefault of 4, you would change the
/etc/defaults/passwd file to read:

Administering Passwords 179

MAXWEEKS=4
MINWEEKS=
PASSLENGTH=

Maximum weeks

You can use the MAXWEEKSdefault in the /etc/defaults/passwd file to set the
maximum number of weeks that a user’s password is valid. To set a default
maximum time period, type the appropriate number of weeks after the equal sign in
the MAXWEEKS=line:

MAXWEEKS=N

Where N is a number of weeks. For example, MAXWEEKS=9.

Minimum Weeks

You can use the MINWEEKSdefault in the /etc/defaults/passwd file to set the
minimum nuber of weeks that must pass before a user can change passwords. To set
a default minimum time period, type the appropriate number of weeks after the
equal sign on the MINWEEKS=line:

MINWEEKS=N

Where N is a number of weeks. For example, MINWEEKS=2.

Warning Weeks

You can add a WARNWEEKSdefault to the /etc/defaults/passwd file set the
number of weeks prior to a password becoming invalid due to aging that user is
warned. for example, if you have set the MAXWEEKSdefault to 9, and you want users
to be warned two weeks before their passwords become invalid, you would set the
MAXWEEKSdefault to 7.

There is no point in setting the WARNWEEKSdefault unless you also set a MAXWEEKS
default.

Remember that WARNWEEKSare counted forward from the date of the user’s last
password change, not abckwards from the MAXWEEKSexpiration date. Thus,
WARNWEEKSmust always be less than MAXWEEKSand cannot be equal to or greater
than MAXWEEKS.

A WARNWEEKSdefault will not work unless there is also a MAXWEEKSdefault.

To set the warning time period, type the appropriate number of weeks after the
equal sign on the WARNWEEKS=line.

180 Solaris Naming Administration Guide ♦ May 1999

WARNWEEKS=N

Where N is the number of weeks. For example, WARNWEEKS=1.

Minimum Password Length
By default, the passwd command assumes a minimum length of six characters. You
can use the PASSLENGTHdefault in the /etc/defaults/passwd files to change
that by setting the minimum number of characters that a user’s password must
contain to some other number.

To set the minimum number of characters to something other than six, type the
appropriate number of characters after the equal sign in the PASSLENGTH=line:

PASSLENGTH=N

Where N is the number of characters. For example, PASSLENGTH=7.

Password Failure Limits
You can specify a number-of-tries limit or an amount-of-time limit (or both) for a
user’s attempt to change passwords. These limits are specified by adding arguments
when starting the rpc.nispasswdd daemon.

Limiting the number of attempts or setting a time frame provides a limited (but not
foolproof) defense against unauthorized persons attempting to change a valid
password to one that they discover through trial and error.

Maximum Number of Tries
To set the maximum number of times a user can try to change a password without
succeeding, use the −a number argument with rpc.nispasswdd , where number is
the number of allowed tries. (You must have superuser privileges on the NIS+
master server to run rpc.nispasswdd .)

For example, to limit users to no more than four attempts (the default is 3), you
would type:

station1# rpc.nispasswdd -a 4

In this case, if a user’s fourth attempt at logging in is unsuccessful, the message
Too many failures - try later is displayed. No further attempts are
permitted for that user ID until a specified period of time has passed.

Administering Passwords 181

Maximum Login Time Period

To set the maximum amount a time a user can take to successfully change a
password, use the −c minutes argument with rpc.nispasswdd, where minutes is
the number of minutes a user has to log in. (You must have superuser privileges on
the NIS+ master server to run rpc.nispasswdd .)

For example, to specify that users must successfully log in within 2 minutes, you
would type:

station1# rpc.nispasswdd -c 2

In this case, if a user is unable to successfully change a password within 2 minutes,
the message is displayed at the end of the two-minute period. No further attempts
are permitted for that user ID until a specified period of time has passed.

182 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 12

Administering NIS+ Groups

This chapter describes NIS+ groups and how to administer them.

� “NIS+ Group Member Types” on page 185

� “Listing the Object Properties of a Group” on page 187

� “Creating an NIS+ Group ” on page 189

� “Deleting an NIS+ Group ” on page 190

� “Adding Members to an NIS+ Group ” on page 190

� “Listing the Members of an NIS+ Group ” on page 191

� “Removing Members From an NIS+ Group ” on page 192

� “Testing for Membership in an NIS+ Group ” on page 192

Note - Some NIS+ security group tasks can be performed more easily with Solstice
AdminSuite tools if you have them available.

Solaris Groups
In a Solaris-NIS+ environment, there are three kinds of groups: UNIX groups, net
groups, and NIS+ groups.

� UNIX groups. A UNIX group is simply a collection of users who are given
additional UNIX access permissions. In an NIS+ namespace, UNIX group
information is stored in the group table located in the org_dir directory object
(group.org_dir). See Chapter 14, for information on how to add, modify, or
delete members of a UNIX group and “group Table ” on page 622, for a
description of the group table.

183

� Net groups. A net group is a group of workstations and users that have permission
to perform remote operations on other workstations. In an NIS+ namespace, net
groups information is stored in the netgroup table located in the org_dir
directory object (netgroup.org_dir). See Chapter 14, for information on how to
add, modify, or delete members of a net groups and “netgroup Table ” on page
624, for a description of the net group table.

� NIS+ groups. An NIS+ group is a set of NIS+ users that are assigned specific access
rights to NIS+ objects, usually for the purpose of administering the namespace.
NIS+ group information is stored in tables located in the groups_dir directory
object.

NIS+ Groups
NIS+ groups are used to assign access rights to NIS+ objects to one or more NIS+
principles. These access rights are described in Chapter 6. Information about NIS+
groups is stored in tables located in the NIS+ groups_dir directory object.
Information about each group is stored in a table of the same name. For example,
information about the admin group is stored in admin.groups_dir .

It is recommended practice to create at least one NIS+ group called admin . The
admin NIS+ group is normally used to designate those users who are to have NIS+
access rights. You can name this group anything you want, but the NIS+ manual set
assumes that the group with NIS+ administrator privileges is named admin . You can
also create multiple NIS+ groups with different sets of users and different sets of
rights.

Note - Always use the nisgrpadm command to work with NIS+ group
membership. You can also use the nisls and nischgrp commands on the group
table. Do not use the nistbladm command on the group table.

For a complete description of NIS+ group-related commands and their syntax and
options, see the NIS+ man pages.

Related Commands
The nisgrpadm command performs most group administration tasks but several
other commands affect groups as well:

184 Solaris Naming Administration Guide ♦ May 1999

TABLE 12–1 Commands That Affect Groups

Command Description See

nissetup Creates, among other things, the directory in which a
domain’s groups are stored: groups_dir .

nisls Lists the contents of the groups_dir directory; in
other words, all the groups in a domain. For each
named groups there will be a table of that name in
groups_dir .

“The nisls Commandniscat
Command With Directories”
on page 197

nischgrp Changes or assigns a group to any NIS+ object. “Changing an Object or Entry’s
Group” on page 150

niscat Lists the object properties and membership of an NIS+
group.

“Using niscat With NIS+
Groups ” on page 187

nisdefaults Lists, among other things, the group that will be
assigned to any new NIS+ object. “Displaying NIS+

Defaults—The nisdefaults
Command” on page 141

For a complete description of these commands and their syntax, and options, see the
NIS+ man pages.

Note - Do not use the nistbladm command to work with the NIS+ groups table.

NIS+ Group Member Types
NIS+ groups can have three types of members: explicit, implicit, and recursive; and
three types of nonmembers, also explicit, implicit, and recursive. These member
types are used when adding or removing members of a group as described in “The
nisgrpadm Command” on page 188.

Member Types
� Explicit. An individual principal. Identified by principal name. The name does not

have to be fully qualified if entered from its default domain.

Administering NIS+ Groups 185

� Implicit. All the NIS+ principals who belong to an NIS+ domain. They are
identified by their domain name, preceded by the * symbol and a dot. The
operation you select applies to all the members in the group.

� Recursive. All the NIS+ principals that are members of another NIS+ group. They
are identified by their NIS+ group name, preceded by the @ symbol. The operation
you select applies to all the members in the group.

NIS+ groups also accept nonmembers in all three categories: explicit, implicit, and
recursive. Nonmembers are principals specifically excluded from a group that they
otherwise would be part of.

Nonmember Types
Nonmembers are identified by a minus sign in front of their name:

� Explicit-nonmember. Identified by a minus sign in front of the principal name.

� Implicit-nonmember. Identified by a minus sign, * symbol, and dot in front of the
domain name.

� Recursive nonmember. Identified by a minus sign and @symbol in front of the group
name.

Group Syntax
The order in which inclusions and exclusions are entered does not matter. Exclusions
always take precedence over inclusions. Thus, if a principal is a member of an
included implicit domain and also a member of an excluded recursive group, then
that principal is not included.

Thus, when using the nisgrpadm command, you can specify group members and
nonmembers as shown in Table 12–2:

TABLE 12–2 Specifying Group Members and Nonmembers

Type of member Syntax

Explicit member username.domain

Implicit member *. domain

Recursive member @groupname.domain

Explicit nonmember - username.domain

186 Solaris Naming Administration Guide ♦ May 1999

TABLE 12–2 Specifying Group Members and Nonmembers (continued)

Type of member Syntax

Implicit nonmember -*. domain

Recursive nonmember @groupname.domain

Using niscat With NIS+ Groups
The niscat −ocommand can be used to list the object properties and membership of
an NIS+ group.

Listing the Object Properties of a Group
To list the object properties of a group, you must have read access to the
groups_dir directory in which the group is stored. Use niscat −o and the group’s
fully qualified name, which must include its groups_dir subdirectory:

niscat -o group-name.groups_dir. domain-name

For example:

rootmaster# niscat -o sales.groups_dir.doc.com.
Object Name : sales
Owner : rootmaster.doc.com.
Group : sales.doc.com.
Domain : groups_dir.doc.com.
Access Rights : ----rmcdr---r---
Time to Live : 1:0:0
Object Type : GROUP
Group Flags :
Group Members : rootmaster.doc.com.

topadmin.doc.com.
@.admin.doc.com.
*.sales.doc.com.

Note - A better list of members is provided by the nisgrpadm -l command.

Administering NIS+ Groups 187

Several of the group’s properties are inherited from the NIS_DEFAULTSenvironment
variable, unless they were overridden when the group was created. The group flags
field is currently unused. In the list of group members, the * symbol identifies
member domains and the @ symbol identifies member groups.

The nisgrpadm Command
The nisgrpadm command creates, deletes, and performs miscellaneous
administration operations on NIS+ groups. To use nisgrpadm , you must have access
rights appropriate for the operation,

TABLE 12–3 Rights Required for nisgrpadm Command

This Operation Requires This Access Right To This Object

Create a group Create groups_dir directory

Destroy a group Destroy groups_dir directory

List the Members Read the group object

Add Members Modify the group object

Remove Members Modify the group object

The nisgrpadm has two main forms, one for working with groups and one for
working with group members.

To create or delete a group, or to lists its members use these forms:

nisgrpadm -c group-name.domain-name
nisgrpadm -d group-name
nisgrpadm -l group-name

To add or remove members, or determine if they belong to the group use this form
(where member... can be any combination of the six membership types listed in Table
12–2):

188 Solaris Naming Administration Guide ♦ May 1999

nisgrpadm -a group-name member...
nisgrpadm -r group-name member...

nisgrpadm -t group-name member...

All operations except create (−c) accept a partially qualified group-name. However,
even for the −c option, nisgrpadm does not require the use of groups_dir in the
group-name argument. In fact, it won’t accept it.

Creating an NIS+ Group
To create an NIS+ group, you must have create rights to the groups_dir directory
of the group’s domain. Use the −c option and a fully qualified group name:

nisgrpadm -c group-name. domainname

When you create a group, an NIS+ groups table with the name you have given is
created in groups_dir . You can use nisls to confirm that the new group table now
exists in groups_dir , and niscat to list the groups members listed in the table.

A newly created group contains no members. See “Adding Members to an NIS+
Group ” on page 190 for information on how to specify who belongs to a group.

The example below creates three groups named admin. The first is in the doc.com.
domain, the second in sales.doc.com. , and the third in manf.doc.com. All
three are created on the master server of their respective domains.

rootmaster# nisgrpadm -c admin.doc.com.
Group admin.doc.com. created.
salesmaster# nisgrpadm -c admin.sales.doc.com.
Group admin.sales.doc.com. created.
manfmaster# nisgrpadm -c admin.manf.doc.com.
Group admin.manf.doc.com. created.

The group you create will inherit all the object properties specified in the
NIS_DEFAULTSvariable; that is, its owner, owning group, access rights, time-to-live,
and search path. You can view these defaults by using the nisdefaults command
(described in Chapter 10). Used without options, it provides this output:

rootmaster# nisdefaults
Principal Name : rootmaster.doc.com.
Domain Name : doc.com.
Host Name : rootmaster.doc.com.
Group Name :
Access Rights : ----rmcdr---r---
Time to live : 12:0:0

Administering NIS+ Groups 189

(Continuation)

Search Path : doc.com.

The owner is listed in the Principal Name: field. The owning group is listed only if
you have set the NIS_GROUPenvironment variable. For example, assuming a C-shell,
to set NIS_GROUPto fns_admins.doc.com :

rootmaster# setenv NIS_GROUP fns_admins.doc.com

You can override any of these defaults at the time you create the group by using the
−D option:

salesmaster# nisgrpadm -D group=special.sales.doc.com.-
c admin.sales.doc.com.
Group admin.sales.doc.com. created.

Deleting an NIS+ Group
To delete an NIS+ group, you must have destroy rights to the groups_dir directory
in the group’s domain. Use the −d option:

nisgrpadm -d group-name

If the default domain is set properly, you don’t have to fully-qualify the group name.
However, you should check first (use nisdefaults), because you could
unintentionally delete a group in another domain. The example below deletes
the test.sales.doc.com. group.

salesmaster% nisgrpadm -d test.sales.doc.com.
Group ‘test.sales.doc.com.’ destroyed.

Adding Members to an NIS+ Group
To add members to an NIS+ group you must have modify rights to the group object.
Use the −a option:

nisgrpadm -a group-name members. . .

As described in “NIS+ Group Member Types” on page 185, you can add principals
(explicit members), domains (implicit members), and groups (recursive members).
You don’t have to fully qualify the name of the group or the name of the members
who belong to the default domain. This example adds the NIS+ principals panza and

190 Solaris Naming Administration Guide ♦ May 1999

valjean, both from the default domain, sales.doc.com. , and the principal makeba,
from the manf.doc.com. domain, to the group top-team.sales.doc.com.

client% nisgrpadm -a Ateam panza valjean makeba.manf.doc.com.
Added panza.sales.doc.com to group Ateam.sales.doc.com
Added valjean.sales.doc.com to group Ateam.sales.doc.com
Added makeba.manf.doc.com to group Ateam.sales.doc.com

To verify the operation, use the nisgrpadm −l option. Look for the members under
the Explicit members heading.

This example adds all the NIS+ principals in the doc.com. domain to the
staff.doc.com. group. It is entered from a client in the doc.com. domain. Note
the * symbol and the dot in front of the domain name.

client% nisgrpadm -a Staff *.doc.com.
Added *.doc.com. to group Staff.manf.doc.com.

This example adds the NIS+ group admin.doc.com. to the
admin.manf.doc.com. group. It is entered from a client of the manf.doc.com.
domain. Note the @ symbol in front of the group name.

client% nisgrpadm -a admin @admin.doc.com.
Added @admin.doc.com. to group admin.manf.doc.com.

Listing the Members of an NIS+ Group
To list the members of an NIS+ group, you must have read rights to the group object.
Use the −l option:

nisgrpadm -l group-name

This example lists the members of the admin.manf.doc.com. group. It is entered
from a client in the manf.doc.com. group:

client% nisgrpadm -l admin
Group entry for admin.manf.doc.com. group:

No explicit members
No implicit members:
Recursive members:
@admin.doc.com.
No explicit nonmembers
No implicit nonmembers
No recursive nonmembers

Administering NIS+ Groups 191

Removing Members From an NIS+ Group
To remove members from an NIS+ group, you must have modify rights to the group
object. Use the −r option:

nisgrpadm -r group-name members. . .

This example removes the NIS+ principals allende and hugo.manf.doc.com.
from the Ateam.sales.doc.com group. It is entered from a client in the
sales.doc.com. domain :

client% nisgrpadm -r Ateam allende hugo.manf.doc.com.
Removed allende.sales.doc.com. from group Ateam.sales.doc.com.
Removed hugo.manf.doc.com. from group Ateam.sales.doc.com.

This example removes the admin.doc.com. group from the
admin.manf.doc.com. group. It is entered from a client in the manf.doc.com.
domain:

client% nisgrpadm -r admin @admin.doc.com.
Removed @admin.doc.com. from group admin.manf.doc.com.

Testing for Membership in an NIS+ Group
To find out whether an NIS+ principal is a member of a particular NIS+ group you
must have read access to the group object. Use the −t option:

nisgrpadm -t group-name members. . .

This example tests whether the NIS+ principal topadmin belongs to the
admin.doc.com. group. It is entered from a client in the doc.com. domain.

client% nisgrpadm -t admin topadmin
topadmin.doc.com. is a member of group admin.doc.com.

This example tests whether the NIS+ principal jo, from the sales.doc.com.
domain, belongs to the admin.sales.doc.com. group. It is entered from a client in
the doc.com. domain.

192 Solaris Naming Administration Guide ♦ May 1999

client% nisgrpadm -t admin.sales.doc.com. jo.sales.doc.com.
jo.sales.doc.com. is a member of group admin.sales.doc.com.

Administering NIS+ Groups 193

194 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 13

Administering NIS+ Directories

This chapter describes NIS+ directory objects and how to administer them.

� “Listing the Object Properties of a Directory” on page 196

� “Listing the Contents of a Directory—Terse” on page 198

� “Listing the Contents of a Directory—Verbose” on page 198

� “Creating a Directory ” on page 199

� “Adding a Replica to an Existing Directory ” on page 201

� “Removing a Directory ” on page 203

� “Disassociating a Replica From a Directory ” on page 203

� “Removing Nondirectory Objects ” on page 205

� “Starting a NIS-Compatible Daemon” on page 206

� “Starting a DNS-Forwarding NIS-Compatible Daemon” on page 206

� “Stopping the NIS+ Daemon” on page 207

� “Initializing a Client” on page 207

� “Initializing the Root Master Server ” on page 208

� “Starting and Stopping the Cache Manager” on page 209

� “Displaying the Contents of the NIS+ Cache” on page 210

� “Pinging and Checkpointing” on page 210

� “Displaying When Replicas Were Last Updated ” on page 211

� “Checkpointing a Directory” on page 212

� “Changing the Time-to-Live of an Object” on page 217

� “Changing the Time-to-Live of a Table Entry” on page 217

195

NIS+ Directories
NIS+ directory objects are used to store information related to an NIS+ domain. For
each NIS+ domain, there is a corresponding NIS+ directory structure. See Chapter 4,
for more information about NIS+ directories.

For a complete description of NIS+ directory-related commands and their syntax and
options, see the NIS+ man pages.

Using the niscat Command With
Directories
The niscat −o command can be used to list the object properties of an NIS+
directory. To use it, you must have read access to the directory object itself.

Listing the Object Properties of a Directory
To list the object properties of a directory, use niscat −o and the directory’s name:

niscat -o directory-name

For example:

rootmaster# niscat -o doc.com.
Object Name : doc
Owner : rootmaster.doc.com.
Group :
Domain : Com.
Access Rights : r---rmcdr---r---
Time to Live : 24:0:0
Object Type : DIRECTORY
.
.

196 Solaris Naming Administration Guide ♦ May 1999

The nisls Commandniscat
Command With Directories
The nisls command lists the contents of an NIS+ directory. To use it, you must
have read rights to the directory object.

To display in terse format, use:

nisls [-dgLmMR] directory-name

To display in verbose format, use:

nisls -l [-gm] [-dLMR] directory-name

TABLE 13–1 Options for the nisls Command

Option Purpose

−d
Directory object. Instead of listing a directory’s contents, treat it like another
object.

−L
Links. If the directory name is actually a link, the command follows the link
and displays information about the linked directory.

−M
Master. Get the information from the master server only. Although this
provides the most up-to-date information, it may take longer if the master
server is busy.

−R
Recursive. List directories recursively. That is, if a directory contains other
directories, their contents are displayed as well.

−l
Long. Display information in long format. Long format displays an object’s
type, creation time, owner, and access rights.

−g
Group. When displaying information in long format, display the directory’s
group owner instead of its owner.

−m
Modification time. When displaying information in long format, display the
directory’s modification time instead of its creation time.

Administering NIS+ Directories 197

Listing the Contents of a Directory—Terse
To list the contents of a directory in the default short format, use one or more of the
options listed below and a directory name. If you don’t supply a directory name,
NIS+ will use the default directory.

nisls [-dLMR] directory-name

or

nisls [-dLMR]

For example, this instance of nisls is entered from the root master server of the
root domain doc.com. :

rootmaster% nisls doc.com.:
org_dir
groups_dir

Here is another example entered from the root master server:

rootmaster% nisls -R sales.doc.com.
sales.doc.com.:
org_dir
groups_dir
groups_dir.sales.doc.com.:
admin
org_dir.sales.doc.com.:
auto_master
auto_home
bootparams
cred
.

Listing the Contents of a Directory—Verbose
To list the contents of a directory in the verbose format, use the −l option and one or
more of the options listed below. The −g and −moptions modify the attributes that are
displayed. If you don’t supply a directory name, NIS+ will use the default directory.

nisls -l [-gm] [-dLMR] directory-name

or

nisls -l [-gm] [-dLMR]

Here is an example, entered from the master server of the root domain doc.com. :

198 Solaris Naming Administration Guide ♦ May 1999

rootmaster% nisls -l
doc.com.
D r---rmcdr---r--- rootmaster.doc.com. date org_dir
D r---rmcdr---r--- rootmaster.doc.com. date groups_dir

The nismkdir Command
Note - This section describes how to add a nonroot server to an existing domain
using the nismkdir command. An easier way to do this is with the nisserver
script as described in Solaris Naming Setup and Configuration Guide

The nismkdir command creates a nonroot NIS+ directory and associates it with a
master server. (To create a root directory, use the nisinit −r command, described
in “The nisinit Command ” on page 207.) The nismkdir command can also be
used to add a replica to an existing directory.

There are several prerequisites to creating an NIS+ directory, as well as several related
tasks. For a complete description, see Solaris Naming Setup and Configuration Guide.

To create a directory, use:

nismkdir [-m master-server] \
directory-name

To add a replica to an existing directory, use:

nismkdir -s replica-server \
directory-name

nismkdir -s replica-server \
org_dir. directory-name

nismkdir -s replica-server \
groups_dir. directory-name

Creating a Directory
To create a directory, you must have create rights to its parent directory on the
domain master server. First use the −moption to identify the master server and then
the −s option to identify the replica, use:

Administering NIS+ Directories 199

nismkdir -m master directory
nismkdir -s replica directory

Caution - Always run nismkdir on the master server. Never run nismkdir on the
replica machine. Running nismkdir on a replica creates communications problems
between the master and the replica.

this example creates the sales.doc.com. directory and specifies its master server,
smaster.doc.com. and its replica, rep1.doc.com . It is entered from the root
master server.

rootmaster% nismkdir -m smaster.doc.com. sales.doc.com.
rootmaster% nismkdir -m smaster.doc.com. org_dir.sales.doc.com.
rootmaster% nismkdir -m smaster.doc.com. groups_dir.sales.doc.com.
rootmaster% nismkdir -s rep1.doc.com. sales.doc.com.
rootmaster% nismkdir -s rep1.doc.com. org_dir.sales.doc.com.
rootmaster% nismkdir -s rep1.doc.com. groups_dir.sales.doc.com.

Namespace Servers

 new
directory

uses parent’s
 servers

The nismkdir command allows you to use the parent directory’s servers for the
new directory instead of specifying its own. However, this should not be done except
in the case of small networks. Here are two examples:

� The first example creates the sales.doc.com. directory and associates it with its
parent directory’s master and replica servers.

rootmaster% nismkdir sales.doc.com

Namespace Servers

 new
directory

specifies own
master

200 Solaris Naming Administration Guide ♦ May 1999

The second example creates the sales.doc.com. directory and specifies its own
master server, smaster.doc.com.

rootmaster% nismkdir -m smaster.doc.com. sales.doc.com.

Since no replica server is specified, the new directory will have only a master server
until you use nismkdir again to assign it a replica. If the sales.doc.com. domain
already existed, the nismkdir command as shown above would have made
salesmaster.doc.com. its new master server and would have relegated its old
master server to a replica.

Adding a Replica to an Existing Directory
This section describes how to add a replica server to an existing system using the
nismkdir command. An easier way to do this is with the nisserver script as described
in Solaris Naming Setup and Configuration Guide.

Keep in mind the following principles:

� Root domain servers reside in (are part of) the root domain.

� Subdomain servers reside in (are part of) the parent domain immediately above
the subdomain in the hierarchy. For example, if a namespace has one root domain
named prime and a subdomain named sub1 :

� The master and replica servers that serve the prime domain are themselves
part of the prime domain because prime is the root domain.

� The master and replica servers that serve the sub1 subdomain are also part of
the prime domain because prime is the parent of sub1 .

� While it is possible for a master or replica server to serve more than one domain,
doing so is not recommended.

To assign a new replica server to an existing directory, use nismkdir on the master
server with the −s option and the name of the existing directory, org_dir , and
groups_dir :

nismkdir -s replica-server existing-directory-name
nismkdir -s replica-server org_dir. existing-directory-name
nismkdir -s replica-server groups_dir. existing-directory-name

The nismkdir command realizes that the directory already exists, so it does not
recreate it. It only assigns it the additional replica. Here is an example with rep1
being the name of the new replica machine:

Administering NIS+ Directories 201

rootmaster% nismkdir -s rep1.doc.com. doc.com.
rootmaster% nismkdir -s rep1.doc.com. org_dir.doc.com.
rootmaster% nismkdir -s rep1.doc.com. groups_dir.doc.com.

Caution - Always run nismkdir on the master server. Never run nismkdir on the
replica machine. Running nismkdir on a replica creates communications problems
between the master and the replica.

After running the three iterations of nismkdir as shown above, you need to run
nisping from the master server on the three directories:

rootmaster# nisping doc.com.
rootmaster# nisping org_dir.doc.com.
rootmaster# nisping group_dir.doc.com.

You should see results similar to these:

rootmaster# nisping doc.com.
Pinging replicas serving directory doc.com. :
Master server is rootmaster.doc.com.

Last update occurred at Wed Nov 18 19:54:38 1995
Replica server is rep1.doc.com.

Last update seen was Wed Nov 18 11:24:32 1995
Pinging ... rep1.doc.com

It is good practice to include nisping commands for each of these three directories
in the master server’s cron file so that each directory is “pinged” at least once every
24 hours after being updated.

The nisrmdir Command
The nisrmdir command can remove a directory or simply dissociate a replica server
from a directory. (When a directory is removed or disassociated from a replica server,
that machine no longer functions as an NIS+ replica server for that NIS+ domain.)

When it removes a directory, NIS+ first disassociates the master and replica servers
from the directory, and then removes the directory.

� To remove the directory, you must have destroy rights to its parent directory.

� To dissociate a replica server from a directory, you must have modify rights to the
directory.

202 Solaris Naming Administration Guide ♦ May 1999

If problems occur, see “Removal or Disassociation of NIS+ Directory from Replica
Fails” on page 522.

Removing a Directory
To remove an entire directory and dissociate its master and replica servers, use the
nisrmdir command without any options:

nisrmdir directory-name
nisping domain

This example removes the manf.doc.com. directory from beneath the doc.com.
directory:

rootmaster% nisrmdir manf.doc.com.
rootmaster% nisping doc.com.

Disassociating a Replica From a Directory
To disassociate a replica server from a directory, you must first remove the
directory’s org_dir and groups_dir subdirectories. To do this, use the nisrmdir
command with the −s option. After each of the subdirectories are removed, you
must run nisping on parent domain.

nisrmdir -s replicanameorg_dir .domain
nisrmdir -s replicanamegroups_dir .domain
nisrmdir -s replicaname domain
nisping domain

This example disassociates the manfreplica1 server from the manf.doc.com.
directory:

Administering NIS+ Directories 203

rootmaster% nisrmdir -s manfreplica1 org_dir.manf.doc.com.
rootmaster% nisrmdir -s manfreplica1 groups_dir.manf.doc.com.

rootmaster% nisrmdir -s manfreplica1 manf.doc.com.
rootmaster% nisping manf.doc.com.

If the replica server you are trying to dissociate is down or out of communication,
the nisrmdir −scommand returns a
Cannot remove replica name: attempt to remove a non-empty table
error message. In such cases, you can run nisrmdir −f −s replicaname on the master
to force the dissociation. Note, however, that if you use nisrmdir −f −s to
dissociate an out-of-communication replica, you must run nisrmdir −f −s again as
soon as the replica is back on line in order to clean up the replica’s /var/nis file
system. If you fail to rerun nisrmdir −f −s replicaname when the replica is back in
service, the old out-of-date information left on the replica could cause problems.

The nisrm Command
The nisrm command is similar to the standard rm system command. It removes any
NIS+ object from the namespace, except directories and nonempty tables. To use the
nisrm command, you must have destroy rights to the object. However, if you don’t,
you can use the −f option, which tries to force the operation in spite of permissions.

You can remove group objects with the nisgrpadm −d command (see “Deleting an
NIS+ Group ” on page 190), and you can empty tables with nistbladm −r or
nistbladm −R (see “Deleting a Table ” on page 227).

To remove a nondirectory object, use:

nisrm [-if] object-name

TABLE 13–2 nisrm Syntax Options

Option Purpose

−i
Inquire. Asks for confirmation prior to removing an object. If the object-name
you provide is not fully qualified, this option is used automatically.

−f
Force. Attempts to force a removal even if you don’t have the proper
permissions. It attempts to change the permission by using the nischmod
command, and then tries to remove the object again.

204 Solaris Naming Administration Guide ♦ May 1999

Removing Nondirectory Objects
To remove nondirectory objects, use the nisrm command and provide the object
names:

nisrm object-name...

This example removes a group and a table from the namespace:

rootmaster% nisrm -i admins.doc.com. groups.org_dir.doc.com.
Remove admins.doc.com.? y
Remove groups.org_dir.doc.com.? y

The rpc.nisd Command
The rpc.nisd command starts the NIS+ daemon. The daemon can run in
NIS-compatibility mode, which enables it to answer requests from NIS clients as
well. You don’t need any access rights to start the NIS+ daemon, but you should be
aware of all its prerequisites and related tasks. They are described in Solaris Naming
Setup and Configuration Guide.

By default, the NIS+ daemon starts with security level 2.

To start the daemon, use:

rpc.nisd

To start the daemon in NIS-compatibility mode, use:

rpc.nisd -Y [-B]

To start an NIS-compatible daemon with DNS forwarding capabilities, use:

rpc.nisd -Y -B

Administering NIS+ Directories 205

TABLE 13–3 Other rpc.nisd Syntax Options

Option Purpose

−S security-level Specifies a security level, where 0 means no NIS+ security and 2
provides full NIS+ security. (Level 1 is not supported.)

−F
Forces a checkpoint of the directory served by the daemon. This has
the side effect of emptying the directory’s transaction log and freeing
disk space.

To start the NIS+ daemon on any server, use the command without options:

rpc.nisd

The daemon starts with security level 2, which is the default.

To start the daemon with security level 0, use the −S flag:

rpc.nisd -S 0

Starting a NIS-Compatible Daemon
You can start the NIS+ daemon in NIS-compatibility mode in any server, including
the root master. Use the −Y (uppercase) option:

rpc.nisd -Y

If the server is rebooted, the daemon will not restart in NIS-compatibility mode
unless you also uncomment the line that contains EMULYP=Yin the server’s
/etc/init.d/rpc file.

Starting a DNS-Forwarding NIS-Compatible
Daemon
You can add DNS forwarding capabilities to an NIS+ daemon running in
NIS-compatibility mode by adding the −B option to rpc.nisd :

rpc.nisd -Y -B

If the server is rebooted, the daemon will not restart in DNS-forwarding
NIS-compatibility mode unless you also uncomment the line that contains
EMULYP=-Yin the server’s /etc/init.d/rpc file and change it to:

EMULYP -Y -B

206 Solaris Naming Administration Guide ♦ May 1999

Stopping the NIS+ Daemon
To stop the NIS+ daemon, whether it is running in normal or NIS-compatibility
mode, kill it as you would any other daemon: first find its process ID, then kill it:

rootmaster# ps -e | grep rpc.nisd
root 1081 1 61 16:43:33 ? 0:01 rpc.nisd -S 0
root 1087 1004 11 16:44:09 pts/1 0:00 grep rpc.nisd
rootmaster# kill 1081

The nisinit Command
This section describes how to initialize a workstation client using the nisinit
command. An easier way to do this is with the nisclient script as described in
Solaris Naming Setup and Configuration Guide.

The nisinit command initializes a workstation to be an NIS+ client or server. As
with the rpc.nisd command, you don’t need any access rights to use the nisinit
command, but you should be aware of its prerequisites and related tasks. These are
described in Solaris Naming Setup and Configuration Guide.

Initializing a Client
You can initialize a client in three different ways:

� By host name

� By broadcast

� By cold-start file

Each way has different prerequisites and associated tasks. For instance, before you
can initialize a client by host name, the client’s /etc/hosts file must list the host
name you will use and nsswitch.conf file must have files as the first choice on
the hosts line. Complete instructions for each method, including prerequisites and
associated tasks, are provided in Solaris Naming Setup and Configuration Guide.
Following is a summary of the steps that use the nisinit command.

To initialize a client by host name, use the −c and −H options, and include the name
of the server from which the client will obtain its cold-start file:

nisinit -c -H hostname

Administering NIS+ Directories 207

To initialize a client by cold-start file, use the −c and −C options, and provide the
name of the cold-start file:

nisinit -c -C filename

To initialize a client by broadcast, use the −c and −B options:

nisinit -c -B

Initializing the Root Master Server
To initialize the root master server, use the nisinit −r command:

nisinit -r

You will need the following information

� The superuser password of the workstation that will become the root master
server.

� The name of the new root domain. The root domain name must have at least two
elements (labels) and end in a dot (for example, something.com .). The last element
must be either an Internet organizational name (as shown in Table 13–4), or a two
or three character geographic identifier such as .jp . for Japan.

TABLE 13–4 Internet Organizational Domains

Domain Purpose

com Commercial organizations

edu Educational institutions

gov Government institutions

mil Military groups

net Major network support centers

org Nonprofit organizations and others

int International organizations

208 Solaris Naming Administration Guide ♦ May 1999

The nis_cachemgr Command
The nis_cachemgr command starts the NIS+ cache manager program, which
should run on all NIS+ clients. The cache manager maintains a cache of location
information about the NIS+ servers that support the most frequently used directories
in the namespace, including transport addresses, authentication information, and a
time-to-live value.

At start-up the cache manager obtains its initial information from the client’s
cold-start file, and downloads it into the /var/nis/NIS_SHARED_DIRCACHE file.

The cache manager makes requests as a client workstation. Make sure the client
workstation has the proper credentials, or instead of improving performance, the
cache manager will degrade it.

Starting and Stopping the Cache Manager
To start the cache manager, enter the nis_cachemgr command (with or without the
−i option):

client% nis_cachemgr
client% nis_cachemgr -i

Without the −i option, the cache manager is restarted but it retains the information
in the /var/nis/NIS_SHARED_DIRCACHE file. The information in the cold-start file
is simply appended to the existing information in the file. The −i option clears the
cache file and re-initializes it from the contents of the client’s cold-start file.

To stop the cache manager, kill it as you would any other process.

The nisshowcache Command
The nisshowcache command displays the contents of a client’s directory cache.

Administering NIS+ Directories 209

Displaying the Contents of the NIS+ Cache
The nisshowcache command is located in /usr/lib/nis . It displays only the
cache header and the directory names. Here is an example entered from the root
master server:

rootmaster# /usr/lib/nis/nisshowcache -v
Cold Start directory:
Name : doc.com.
Type : NIS
Master Server :

Name : rootmaster.doc.com.
Public Key : Diffie-Hellman (192 bits)
Universal addresses (3)
. .

Replicate:
Name : rootreplica1.doc.com.
Public Key : Diffie-Hellman (192 bits)
Universal addresses (3)
.
.
.

Time to live : 12:0:0
Default Access Rights :

Pinging and Checkpointing
When a change is made to the NIS+ data set, that change is made in the memory of
the master server for the NIS+ domain (or subdomain). A record of the change is
also logged in the master server’s transaction log (/var/nis/data/trans.log).

Normally, the master server transfers a change in the NIS+ data set to the domain’s
replica servers 120 seconds (2 minutes) after the change was made. This transfer
process is called pinging. When the master server pings a replica, it updates the
replica’s data set with the change. The changed NIS+ data now resides in memory of
the master and replica servers.

If a the automatic ping process fails to update one or more replica servers, you need
to manually force a ping as described in “Forcing a Ping” on page 211. If you suspect
that a replica has not been correctly updated with the most current NIS+ data, you
can check when the replica was last updated as described in “Displaying When
Replicas Were Last Updated ” on page 211.

Changes to the NIS+ data set stored in server memory and recorded in the
transaction log need to be written into the NIS+ tables stored on disk. The process of
updating the NIS+ tables is called checkpointing.

210 Solaris Naming Administration Guide ♦ May 1999

Checkpointing is not an automatic process. You must issue the checkpoint command
as described in “Checkpointing a Directory” on page 212.

The nisping Command
The nisping command is used to:

� Display when a replica was last pinged as described in

� Force the master server to ping a replica if the automatic ping cycle has not been
successful as described in “Forcing a Ping” on page 211

� Checkpoint servers as described in

Displaying When Replicas Were Last Updated
When used with the −u option, the nisping command displays the update times for
the master and replicas of the local domain.

/usr/lib/nis/nisping -u [domain]

To display the last updates in some other domain, specify the domain name in the
command line. Note that when used with the −u option, the nisping command
does not actually ping any replicas.

For example, to display the most recent replica update times for the local doc.com.
domain, you would enter:

rootmaster# /usr/lib/nisping -u
Last updates for directory doc.com.:
Master server is rootmaster.doc.com.

Last update occurred at Wed Nov 25 10:53:37 1992
Replica server is rootreplica1.doc.com.

Last update seen was Wed Nov 25 10:53:37 1992

Forcing a Ping
If the nisping −u command reveals that a replica has not been properly updated,
you can use the nisping command to force the master server to ping all the replicas
in a domain, or one replica in particular.

To ping all the replicas, use the nisping command without options:

/usr/lib/nis/nisping

This forces the master server to ping all the replicas in the domain. Here is an
example that pings all the replicas of the local doc.com. domain:

Administering NIS+ Directories 211

rootmaster# /usr/lib/nis/nisping
Pinging replicas serving directory doc.com.:
Master server is rootmaster.doc.com.

Last update occurred at Wed Nov 25 10:53:37 1992
Replica server is rootreplica1.doc.com.

Last update seen was Wed Nov 18 11:24:32 1992
Pinging ... rootreplica1.doc.com.

To ping all the replicas in a domain other than the local domain, append a domain
name:

/usr/lib/nis/nisping domainname

You can also ping all the tables in all the directories on a single specified host. To
ping all the tables in all the directories of a particular host, us the −a option:

/usr/lib/nis/nisping -a hostname

Checkpointing a Directory
Each domain and subdomain should be checkpointed at least once every 24 hour, or
more often if the transaction log grows too large in relationship to swap space or
total disk space.

Note - Checkpointing large domains, or any domain with a large transaction log, is a
time-consuming process which ties up NIS+ servers and slows NIS+ service. While a
server is checkpointing, it will still answer requests for service, but it will be
unavailable for updates. If possible, checkpoint operations should be scheduled for
times when system use is low. You can use the cron file to schedule checkpoint
operations.

To perform a checkpoint operation, run nisping −C on the domain’s master server.
It is good practice to first ping all replicas before checkpointing. This ensures that the
replicas are checkpointing data that is current and up to date.

� To checkpoint a particular directory, run the nisping command with the −C
directoryname option. For example,

rootmaster# /usr/lib/nis/nisping
rootmaster# /usr/lib/nis/nisping -C org_dir

� To checkpoint all the directories in the local domain, run the nisping command
with the −C −a options. For example,

212 Solaris Naming Administration Guide ♦ May 1999

rootmaster# /usr/lib/nis/nisping
rootmaster# /usr/lib/nis/nisping -C -a

Once a server has transferred information from the server’s transaction log to the
appropriate NIS+ tables, the transactions in the log file are erased to conserve disk
space.

For example, to checkpoint all of the directories in the doc.com. domain, you
would enter:

rootmaster# /usr/lib/nis/nisping -C -a
Checkpointing replicas serving directory doc.com. :
Master server is rootmaster.doc.com.

Last update occurred at Wed May 25 10:53:37 1995
Master server is rootmaster.doc.com.
checkpoint has been scheduled with rootmaster.doc.com.
Replica server is rootreplica1.doc.com.

Last update seen was Wed May 25 10:53:37 1995
Replica server is rootreplica1.doc.com.
checkpoint has been scheduled with rootmaster.doc.com.

The nislog Command
The nislog command displays the contents of the transaction log.

/usr/sbin/nislog
/usr/sbin/nislog -h [number]
/usr/sbin/nislog -t [number]

Administering NIS+ Directories 213

TABLE 13–5 Options for the nislog Command

Option Purpose

−h [num]
Display transactions starting with the head (beginning) of the log. If the
number is omitted, the display begins with the first transaction. If the
number 0 is entered, only the log header is displayed

−t [num]
Display transactions starting backward from the end (tail) of the log. If the
number is omitted, the display begins with the last transaction. If the
number 0 is entered, only the log header is displayed

−v
Verbose mode

Displaying the Contents of the Transaction Log
Each transaction consists of two parts: the particulars of the transaction and a copy
of an object definition.

Here is an example that shows the transaction log entry that was made when the
doc.com. directory was first created. “XID” refers to the transaction ID.

rootmaster# /usr/sbin/nislog -h 1
NIS Log printing facility.
NIS Log dump:

Log state : STABLE
Number of updates : 48
Current XID : 39
Size of log in bytes : 18432
UPDATES
@@@@@@@@@@@@@@TRANSACTION@@@@@@@@@@@@@@
#00000, XID : 1
Time : Wed Nov 25 10:50:59 1992
Directory : doc.com.
Entry type : ADD Name
Entry timestamp : Wed Nov 25 10:50:59 1992
Principal : rootmaster.doc.com.
Object name : org_dir.doc.com.
...................Object......................
Object Name : org_dir
Owner : rootmaster.doc.com.
Group : admin.doc.com.
Domain : doc.com.
Access Rights : r---rmcdr---r---
Time to Live : 24:0:0
Object Type : DIRECTORY
Name : ‘org_dir.doc.com.’

(continued)

214 Solaris Naming Administration Guide ♦ May 1999

(Continuation)

Type: NIS
Master Server : rootmaster.doc.com.
.
.
..
@@@@@@@@@@@@@@TRANSACTION@@@@@@@@@@@@@@
#00000, XID : 2

The nischttl Command
The nischttl command changes the time-to-live value of objects or entries in the
namespace. This time-to-live value is used by the cache manager to determine when
to expire a cache entry. You can specify the time-to-live in total number of seconds or
in a combination of days, hours, minutes, and seconds.

The time-to-live values you assign objects or entries should depend on the stability
of the object. If an object is prone to frequent change, give it a low time-to-live value.
If it is steady, give it a high one. A high time-to-live is a week; a low one is less than
a minute. Password entries should have time-to-live values of about 12 hours to
accommodate one password change per day. Entries in tables that don’t change
much, such as those in the RPC table, can have values of several weeks.

To change the time-to-live of an object, you must have modify rights to that object.
To change the time-to-live of a table entry, you must have modify rights to the table,
entry, or columns you wish to modify.

To display the current time-to-live value of an object or table entry, use the
nisdefaults −t command, described in Chapter 10.

To change the time-to-live value of objects, use:

nischttl time-to-live object-name

or

nischttl [-L] time-to-live object-name

To change the time-to-live value of entries, use:

Administering NIS+ Directories 215

nischttl time-to-live \
[column=value,...], \

table-name

or

nischttl [-ALP] time-to-live \
[column=value,...], \
table-name

Where time-to-live is expressed as:

� Number of seconds. A number with no letter is interpreted as a number of seconds.
Thus, 1234 for TTL would be interpreted as 1,234 seconds. A number followed by
the letter s is also interpreted as a number of seconds. Thus, 987s for TTL would
be interpreted as 987 seconds. When seconds are specified in combination with
days, hours, or minutes, you must use the letter s to identify the seconds value.

� Number of minutes. A number followed by the letter mis interpreted as a number of
minutes. Thus, 90m for TTL would be interpreted as 90 minutes.

� Number of hours. A number followed by the letter h is interpreted as a number of
hours. Thus, 9h for TTL would be interpreted as 9 hours.

� Number of days. A number followed by the letter d is interpreted as a number of
days. Thus, 7d for TTL would be interpreted as 7 days.

These values may be used in combination. For example, a TTL value of 4d3h2m1s
would specify a time to live of four days, three hours, two minutes, and one second.

The following flags may also be used with the nischttl command:

TABLE 13–6 nischttl Syntax Options

Option Purpose

−A
All. Apply the change to all the entries that match the column=value
specifications that you supply.

−L
Links. Follow links and apply the change to the linked object rather than the
link itself.

−P
Path. Follow the path until there is one entry that satisfies the condition.

216 Solaris Naming Administration Guide ♦ May 1999

Changing the Time-to-Live of an Object
To change the time-to-live of an object, type the nischttl command with the
time-to-live value and the object-name. You can add the −L command to extend the
change to linked objects.

nischttl -L time-to-live object-name

You can specify the time-to-live in seconds by typing the number of seconds. Or you
can specify a combination of days, hours, minutes, and seconds by using the suffixes
s , m, h, and d to indicate the number of seconds, minutes, days, and hours. For
example:

client% nischttl 86400 sales.doc.com.
client% nischttl 24h sales.doc.com.
client% nischttl 2d1h1m1s sales.doc.com.

The first two commands change the time-to-live of the sales.doc.com. directory
to 86,400 seconds, or 24 hours. The third command changes the time-to-live of all the
entries in a hosts table to 2 days, 1 hour, 1 minute, and 1 second.

Changing the Time-to-Live of a Table Entry
To change the time-to-live of entries, use the indexed entry format. You can use any
of the options, −A, −L, or −P.

nischttl [-ALP] time-to-live \
[column=value,...], \
table-name

Note - C-shell users should use quotes to prevent the shell from interpreting the
square brackets ([]) around the column value as a meta character.

These examples are similar to those above, but they change the value of table entries
instead of objects:

Administering NIS+ Directories 217

client% nischttl 86400 ’[uid=99],passwd.org_dir.doc.com.’
client% nischttl 24h ‘[uid=99],passwd.org_dir.doc.com.’

client% nischttl 2d1h1m1s ‘[name=fred],hosts.org_dir.doc.com’

218 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 14

Administering NIS+ Tables

This chapter describes NIS+ tables and how to administer them. (See Appendix C,
for detailed descriptions of the default NIS+ tables.)

� “NIS+ Tables” on page 219

� “The nistbladm Command ” on page 220

� “Creating a New Table ” on page 225

� “Deleting a Table ” on page 227

� “Adding Entries to a Table ” on page 228

� “Modifying Table Entries ” on page 231

� “Removing Table Entries ” on page 234

� “The niscat Command ” on page 235

� “Displaying the Contents of a Table ” on page 236

� “Displaying the Object Properties of a Table or Entry ” on page 237

� “The nismatch and nisgrep Commands ” on page 238

� “The nisln Command” on page 242

� “Expanding a Directory Into an NIS-Compatible Domain” on page 244

� “The nisaddent Command” on page 245

NIS+ Tables
Information used by NIS+ is stored in NIS+ tables. (See Appendix C, for a
description of each default NIS+ system tables supplied in Solaris 2.6 release.)

219

For a complete description of NIS+ table-related commands and their syntax and
options, see the NIS+ man pages.

The nistbladm Command
Note - Some NIS+ table administration tasks can be performed more easily with
Solstice AdminSuitetools if you have them available.

The nistbladm command is the primary NIS+ table administration command. The
nistbladm command is for use on NIS+ tables stored in an NIS+ directory object.
With it, you can create, modify, and delete NIS+ tables and entries. To create a table,
its directory must already exist. To add entries to the table, the table and columns
must already be defined.

To create a table, you must have create rights to the directory under which you will
create it. To delete a table, you must have destroy rights to the directory. To modify
the contents of a table, whether to add, change, or delete entries, you must have
modify rights to the table or the entries.

nistbladm Syntax Summary
The general syntax of the nistbladm command is:

nistbladm -a column=" value" \
column=" value" \
column=" value" \
... tablename

nistbladm -a indexedname

nistbladm options \
[columspec | columnvalue] \
[tablename | indexedname]

Where:

� Columnspec is a specification defining a column to be created in a table as
described in “Specifying Table Columns ” on page 225.

� columnvalue identifies a particular cell value in the table identified by tablename as
described in “nistbladm and Column Values ” on page 221.

220 Solaris Naming Administration Guide ♦ May 1999

� Tablename is the name of the table. For example, hosts.org_dir.doc.com.

� Indexedname identifies a particular cell value in a certain table as described in
“nistbladm and Column Values ” on page 221. In essence indexedname is the
equivalent of columnvalue plus tablename.

TABLE 14–1 nistbladm Options

Option Description

−a | −A
Add an entry to an existing NIS+ table. The −a option returns an error if
execution of the command would result in overwritting any existing
entry. The −A option forces execution of the command even if it results in
overwriting an existing entry. (See “Adding Entries to a Table ” on page
228.)

−D defaults Specify a different set of default properties when creating an object. (See
the nistbladm man page for details.)

−d
Destroy a table. (See “Deleting a Table ” on page 227.)

−c
Create a table. (See “Creating a New Table ” on page 225.)

−r | −R
Remove one or more entries from an existing NIS+ table. The −r option
returns an error if execution of the command would result in removal of
more than one entry. The −R option forces execution of the command
even if it results in removing multiple entries. (See “Removing Table
Entries ” on page 234.)

−m
An obsoleted option for modifying table entries that is still supported for
backwards compatibility. The −e and −E options are the preferred
method for editing entries.

−e | −E
Edit an entry in an existing NIS+ table. The −e option returns an error if
execution of the command would affect more than one entry. The −A
option forces execution of the command even if it results in changing an
existing entry in such a way as to overwrite a different entry. (See
“Modifying Table Entries ” on page 231.)

nistbladm and Column Values
Column values are used to identify individual entries in tables using the format:

Administering NIS+ Tables 221

columname=" value", \
columnname=" value", ...

Where:

� columname is the name of a table column

� value is the contents of a particular cell within a column. That value is what
identifies a table row. (When using column=value to create or modify table data,
always enclose the value element in quotes.)

For example, suppose you had a hosts table that listed machine names and IP
addresses:

TABLE 14–2 Example Hosts Table

IP address name aliases

129.146.168.4 altair

129.146.168.119 deneb mail

129.146.168.120 regulus dnsmaster

129.146.168.121 regulus dnsmaster

129.146.168.11 sirius

In this example, your could identify the altair entry (row) in three different ways
using the column=value of:

� name=altair

� address=129.146.168.4

� name=altair,address=129.146.168.4 .

But notice in the table above that the machine regulus is multi-homed and has two
IP addresses. In that case, the column=value of host=regulus identifies two rows.
To identify just the first regulus row, you would enter either:

� address=129.146.168.120 or

� address=129.146.168.120 .,name=regulus,dnsmaster

Note - Some nistbladm operations require that you enter a column=value pair for
every column in the table.

222 Solaris Naming Administration Guide ♦ May 1999

nistbladm , Searchable Columns, and
Keysnistbladm and Column Values
When an NIS+ table is created, one or more columns are designated searchable with
either the S or the I flags as described in “Specifying Table Columns ” on page 225.
You can use the niscat −o tablename command to display a list of a table’s columns
and their characteristics.

A table is keyed on its searchable columns. This means that each row in the table
must have a unique combination of values in the searchable columns. For example, if
a table has one searchable column, each table row must have a unique value in that
column, no two rows may contain the same value.

For example, suppose you had a table containing one searchable column named
city and a non-searchable column named country . The following rows would all
be permitted:

City Country

San Francisco United States

Santa Fe United States

Santiago Chile

But you could not have two rows like:

City Country

London Canada

London England

If a table a table has multiple searchable columns, it is the combination of values that
must be unique. For example, suppose you had a table containing two searchable
columns, Lastname , Firstname and a non-searchable column named city . The
following rows would all be permitted:

Lastname Firstname City

Kuznetsov Sergei Odessa

Kuznetsov Rima Odessa

Sergei Alex Odessa

But you could not have two rows like this:

Administering NIS+ Tables 223

Lastname Firstname City

Kuznetsov Rima Odessa

Kuznetsov Rima Chelm

NIS+ commands use the values in the searchable columns to identify specific table
rows.

nistbladm and Indexed Names
In the context of table administration, an NIS+ indexed name is a name that combines
a table name with column value search criteria to identify and select particular
entries in a table. Indexed names use the format:

[search_criteria], tablename. directory

Note that search_criteria must be enclosed in square brackets [] . The search_criteria
use the format:

columname=value, \
columname=value,...

Where columname=value pairs are column values from the table’s searchable columns
as described in “nistbladm and Column Values ” on page 221.

For example, to identify the altair entry in Table 14–2 you could use the indexed
name:

[addr=129.146.168.4,cname=altair],hosts.org_dir.doc.com.

The nistbladm -R command allows you to remove all the entries in a table by
using the two square brackets with nothing between them [] as a wildcard
specifying all table rows.

nistbladm and Groups
In a Solaris-NIS+ environment, there are three types of groups:

� UNIX groups. Information about UNIX groups is stored in the groups.org_dir
table. Use nistbladm to administer UNIX group information.

� Netgroups. Information about net groups is stored in the netgroups.org_dir
table. Use nistbladm to administer net group information.

224 Solaris Naming Administration Guide ♦ May 1999

� NIS+ groups. Information about NIS+ groups is stored in one or more tables in the
groups_dir directory object. Use nisgrpadm to administer NIS+ group
information.

Note - Do not use nistbladm to administer NIS+ groups.

(See “Solaris Groups” on page 183 for more information on the different types of
groups and how to work with them.)

Creating a New Table
An NIS+ table must have at least one column and at least one of its columns must be
searchable. To create an NIS+ table, use the nistbladm command with the −c option:

nistbladm -c tabletype columnspec \
... tablename

Where:

� Tabletype is simply a name that identifies a class of tables to which this table
belongs. You can use any name you choose.

� A columnspec specifies the name and characteristics of each column in a new table.
Enter one columnspec for each column you want in your new table. Separate the
columnspecs with spaces:

nistbladm -c tabletype columnspec columnspec \ columnspec tablename

Columnspec formats are described in “Specifying Table Columns ” on page 225, below.

Specifying Table Columns
Each columnspec entry has two to four components in the format:

name=type,rights:

Administering NIS+ Tables 225

TABLE 14–3 Table Column Components

Component Description

name Name of the column

= An equal sign which is required.

type
[Optional] The type of column specified by the letters S, I or C (see
Table 14–4). This component is optional. If no type is specified, the
column becomes the default type.

rights
[Optional] Access rights. These access rights are over and above
those granted to the table as a whole or to specific entries. If no
access is specified, the column’s access rights are those granted to
the table as a whole, or to the entry. The syntax for access rights is
described in “Specifying Access Rights in Commands” on page 137.

A column can be one of the following types:

TABLE 14–4 Table Column Types

Type Description

No column type specified after the = sign. The column is neither searchable
nor encrypted.

S Searchable.

I Searchable, but case-insensitive. When NIS+ commands search through the
column, they will ignore case.

C Encrypted.

NIS+ commands search through the column and identify individual table rows based
on the contents of the searchable columns. Searchable columns are designated with
either the S or the I option. In database terminology, a searchable column is a key.
The first column in each table must be searchable. The remaining columns do not
have to be searchable. Because the table is keyed on the searchable columns, if you
have more than one searchable column, they must be the first and subsequent
columns and not skip any columns. For example, if only one column in a table is
searchable, it has to be the first column. If two columns are searchable, they must be

226 Solaris Naming Administration Guide ♦ May 1999

the first two columns. (see “nistbladm , Searchable Columns, and Keysnistbladm
and Column Values ” on page 223 for more information on searchable columns.)

If you specify only access rights, you don’t need to use a comma. If you include one
or more of the −S, −I , or −C flags, add a comma before the access rights.

In the example below, a table is created with the addition of column-specific access
rights applied to the first two columns:

master% nistbladm -c depts Name=I,w+m Site=w+m Name=C \
divs.mydir.doc.com.

For more information about specifying column access rights when creating a table,
see “Setting Column Rights When Creating a Table” on page 147.

Note - NIS+ assumes that all column entries are null terminated. Applications and
routines that write information to NIS+ tables must be configured to null terminate
each column entry.

Creating Additional Automount Table
If you are creating an automount table, the table can have only two columns. The
first column must be named key and the second column must be named value . For
example, to create an automount table named auto1 , you would enter:

master% nistbladm -c key-value key=S value= auto1.org_dir.doc.com.

Deleting a Table
To delete a table, use the −d option and enter the table name:

nistbladm -d tablename

The table must be empty before you can delete it (see “Removing Table Entries ” on
page 234). This example deletes the divs table from the doc.com. directory:

rootmaster% nistbladm -d divs.doc.com.

Administering NIS+ Tables 227

Adding Entries to a Table
To add new entries (rows) to a table, use nistbladm with either the −a or −A
options followed by either one or more column=value pairs and the table name or an
indexed name as described in “nistbladm and Indexed Names” on page 224.

nistbladm [-a | -A] indexedname
nistbladm [-a | -A] column=" value" \
column=" value" \
... tablename

When adding new entry rows to a table with either −a or −A:

� Always enclose the value element in quotes. For example, to add an entry where
the value of the cname column is deneb , the column=value pair would look like:
cname="deneb"

� You must specify a value for every column in the table.

� To specify that a column in the entry row you are adding is empty use
column=" " . In other words, for the value, enclose a space between the quote
marks.

Note - NIS+ is a naming service and its tables are designed to store references to
objects, not the objects themselves. NIS+ is optimized to support 10,000 objects with
a combined total size of all tables not more than 10M bytes. NIS+ does not support
individual tables where the sum of field sizes in a single column are greater than
approximately 7k. If a table is too large, rpc.nisd may fail.

Adding a Table Entry With the −a Option
The −a option adds an entry to a table unless the entry already exists, in which case
it returns an error. An entry is defined as existing if its values in the searchable
columns exactly match the values in the new entry’s searchable columns. (The values
in non-searchable columns are not taken into account.)

To use the −a option, you must specify a value for every column in the table:

nistbladm -a column=" value" \
column=" value" \
... tablename

nistbladm -a indexedname

228 Solaris Naming Administration Guide ♦ May 1999

(To list the names and characteristics of table columns, use the niscat −o tablename
command.)

For example, to add a new row to a table named depts using column=value pairs,
you would enter:

rootmaster% nistbladm -a Name=’R&D’ Site=’SanFran’ \
Name=’vattel’ depts.doc.com.

To add the same entry using an indexed name, you would enter:

rootmaster% nistbladm -a [Name=’R&D’,Site=’SanFran’,\
Name=’vattel’],depts.doc.com.

Both examples would produce a table row that looked like this:

Dept Site Name

R&D SanFran vattel

C-shell users should also use quotes to set off expressions using square brackets.

You can only add one entry with each instance of the nistbladm command. You
must run nistbladm once for each entry row you want to add.

If a table row already exists with values in each column that are identical to the
entry you are trying to create, nistbladm −a will return an error. You cannot have
two identical entry rows in a table. In this context, rows are considered identical if the
values in the searchable columns are identical, the values in none search able columns
are not considered.

For example, if the Dept and Site columns are searchable, and the Namecolumn is
not searchable, nistbladm considers the following two rows to be identical:

Dept (searchable) Site (searchable) Name (not searchable)

Sales Vancouver Hosteen

Sales Vancouver Lincoln

In this example, nistbladm −a would not allow you to create the
Sales Vancouver Lincoln row.

However if just some of the searchable columns have values identical to the entry
you are trying to create, nistbladm −a will create a new entry as specified. For

Administering NIS+ Tables 229

example, you could run the following commands to create two similar, but not
identical, rows in a depts table:

rootmaster% nistbladm -a Dept=’Sales’ \
Site=’Vancouver’ Name=’hosteen’ staff.doc.com.

rootmaster% nistbladm -a Dept=’Sales’ \
Site=’SanFran’ Name=’lincoln’ staff.doc.com.

Which would produce rows that had some, but not all identical values in the
searchable columns:

Dept Site Name

Sales Vancouver hosteen

Sales SanFran lincoln

Adding a Table Entry With the −A Option
The −A option is designed for applications where you need to force nistbladm to
overwrite an existing entry. Like the −a option, −A adds a new entry to a table.
However, if the entry already exists, instead of exiting with an error, it overwrites the
existing entry row.

When using the −A option, you must specify all columns in the entry.

For example, suppose the following table exists and the Dept and Site columns are
searchable:

Dept (searchable) Site (searchable) Name

Sales SanFran Lincoln

Now you run the following command:

rootmaster% nistbladm -A Name=Sales Site=SanFran \
Name=Tsosulu depts.doc.com.

The −a option would have returned an error, since the entry specified by
Name=Sales Site=SanFran already exists. But the −A option allows you to
overwrite the existing row.

230 Solaris Naming Administration Guide ♦ May 1999

Dept Site Name

Sales SanFran Tsosulu

Modifying Table Entries
Existing table entries are edited (modified) using either the −e or −E options. The
Solaris 2.6 release release also supports use of the −moption for backwards
compatibility with earlier releases. (All new applications and command line
operations should use either the −e or −E options.)

To edit an existing entry (row) in a table, use nistbladm with either the −e or −E
options followed by one or more column=value pairs that specify the new values
and ending with an indexed name that identifies a particular row in a table as
described in “nistbladm and Indexed Names” on page 224.

nistbladm [-e | -E] column=" value" \
column=" value" \
... indexedname

When adding new entry rows to a table with either −e or −E:

� Always enclose the value element in quotes. For example, to change the value of
the cname column to deneb , the column=value pair would look like:
cname="deneb"

� You can only edit values in searchable columns one entry (row) at a time.

� To specify that a column in the entry row that you are editing be empty, use
column=" " . In other words, for the value, enclose a space between the quote
marks.

Editing a Table Entry With the −e Option
The −e option edits an entry in a table unless doing so would result in changing
values in searchable columns in more than one entry row, in which case it returns an
error. (The values in non-searchable columns are not taken into account.)

Administering NIS+ Tables 231

nistbladm column=" value" \
column=" value" \

... indexedname

To use the −e option, you only need to specify the column values you are changing.

For example, suppose you had the table:

Dept Site Name

Sales SanFran Tsosulu

To change the value of the Namecolumn to Chandar , you would enter:

master% nistbladm -e Name="Chandar" [Dept=’Sales’,Site=’SanFran’],\
depts.doc.com.

Now the table looks like this:

Dept Site Name

Sales SanFran Chandar

(Note that in the example above, the indexed name did not need to include the Name
column because in these examples that column is not searchable.)

C-shell users should also use quotes to set off expressions using square brackets.

You can use the −e option to edit the values in searchable columns so long as the
new values you specify affect only the single row identified by the indexed name.
For example, to change the department to Manf , you would enter:

master% nistbladm -e Dept="Manf" [Dept=’Sales’,Site=’SanFran’],\
depts.doc.com.

Dept (searchable) Site (searchable) Name

Manf SanFran Chandar

However, if an entry row already existed with Manf and SanFran in the searchable
columns, the −e option would return an error.

232 Solaris Naming Administration Guide ♦ May 1999

You can specify changes to multiple columns so long as they all apply to a single
entry row. For example, to change both the Dept and Name values, you would enter:

master% nistbladm -e Dept="Manf" Name=’’Thi’’ \
[Dept=’Sales’,Site=’SanFran’],depts.doc.com.

Dept (searchable) Site (searchable) Name

Manf SanFran Thi

Editing a Table Entry With the −E Option
The −E option is designed for applications where you need to force nistbladm to
overwrite an existing entry even if doing so will affect more than one entry.

For example, suppose your table had the following rows:

Dept (searchable) Site (searchable) Name

Sales SanFran Chandar

Sales Alameda Achmed

Now you run the following command:

master% nistbladm -E Site="Alameda’’ Mgr="Chu" \
[Div=’Sales’,Site=’SanFran’],depts.doc.com.

Which would change the Sales SanFran Chandar row to Sales Alameda Chu .
But Sales Alameda are the key values identifying the Sales Alameda Achmed
row, so that row would also be changed. The result would be a single row where
once there had been two rows:

Dept (searchable) Site (searchable) Name

Sales Alameda Chu

The −e option would have returned an error, since the edit would affect more than
one row. But the −E option allows you to affect more than one entry row.

Administering NIS+ Tables 233

Removing Table Entries
� To remove a single entry from a table, use the −r option as described in

“Removing Single Table Entries ” on page 234.

� To remove multiple entries from a table, use the −R option as described in
“Removing Multiple Entries From a Table ” on page 234

Removing Single Table Entries
To remove a single entry from a table, use the −r option:

nistbladm -r indexed-name

This example removes the Manf-1 entry from the depts table:

rootmaster% nistbladm -r [Dept=Manf-1,Site=Emeryville,Name=hosteen],\
depts.doc.com.

You can specify as few column values as you wish. If NIS+ finds duplicates, it does
not remove any entry and returns an error message instead. Thus, you could have
removed the Manf-1 by specifying only the Site column value, as in this example:

rootmaster% nistbladm -r [Site=Emeryville],depts.doc.com.

However, you could not have removed the Sales entry by specifying only the Site
column value (SanFran), because two entries have that same value (R&Dand Sales):

Dept Site Name

R&D SanFran kuznetsov

Sales SanFran jhill

Manf-1 Emeryville hosteen

Manf-2 Sausalito lincoln

Removing Multiple Entries From a Table
To remove multiple entries from a table, use the −R option:

234 Solaris Naming Administration Guide ♦ May 1999

nistbladm -R indexedname

As with the −r option, you can specify as few column values as you wish. Unlike the
−r option, however, if NIS+ finds duplicates, it removes all of them. You can find the
name of a table’s column by using the niscat −o command. This example removes
all entries in which the Site is SanFran :

rootmaster% nistbladm -R [Site=SanFran],depts.doc.com.

Dept Site Name

Manf-1 Emeryville hosteen

Manf-2 Sausalito lincoln

You can use the −R option to remove all the entries from a table. Simply do not
specify any column values between the square brackets, as in this example:

rootmaster% nistbladm -R [],depts.doc.com.

When used with the nistbladm -R command, an empty set of square brackets is
interpreted as a wildcard specifying all table rows.

The niscat Command
The niscat command displays the contents of an NIS+ table. However, you can
also use it to display the object properties of the table. You must have read rights to
the table, entries, or columns that you wish to display.

Syntax
To display the contents of a table, use:

niscat [-hM] tablename

To display the object properties of a table, use:

niscat -o tablename
niscat -o entry

Administering NIS+ Tables 235

TABLE 14–5 niscat Options

Option Description

−h
Header. Displays a header line above the table entries, listing the name of
each column.

−M
Master. Displays only the entries of the table stored on the Master server.
This ensures you get the most up-to-date information and should be used
only for debugging.

−o
Object. Displays object information about the table, such as column names,
properties, and servers.

Displaying the Contents of a Table
To display the contents of a table, use niscat with a table name:

niscat tablename

This example displays the contents of the table named depts .

rootmaster% niscat -h depts.doc.com.
#Name:Site:Name
R&D:SanFran:kuznetsov
Sales:SanFran:jhill
Manf-1:Emeryville:hosteen
Manf-2:Sausalito:lincoln

Note - The symbol *NP* indicates that you do not have permission to view that
entry. Permissions are granted on a table, column, or entry (row) basis. For more on
access permissions, see Chapter 10.

236 Solaris Naming Administration Guide ♦ May 1999

Displaying the Object Properties of a
Table or Entry
To list the object properties of a table us niscat −o and the table’s name:

niscat -o tablename.org_dir

To display the object properties of a table entry, use niscat −o and specify the entry
with an indexed name:

entry ::= column=value \
... tablename | \
[column=value,...],\
tablename

Here are two examples, one for a table and one for a table entry:

Table

rootmaster# niscat -o hosts.org_dir.doc.com.
Object Name : hosts
Owner : rootmaster.doc.com.
Group : admin.doc.com.
Domain : org_dir.doc.com.
Access Rights : ----rmcdr---r---
Time to Live : 12:0:0
Object Type : TABLE
Table Type : hosts_tbl
Number of Columns : 4
Character Separator :
Search Path :
Columns :

[0] Name : cname
Attributes : (SEARCHABLE, TEXTUAL DATA, CASE INS
Access Rights: ----------------
[1] Name : name
Attributes : (SEARCHABLE, TEXTUAL DATA, CASE INS
Access Rights: ----------------
[2] Name : addr
Attributes : (SEARCHABLE, TEXTUAL DATA, CASE INS
Access Rights: ----------------
[3] Name : comment
Attributes : (TEXTUAL DATA)
Access Rights: ----------------

Table entry

Administering NIS+ Tables 237

rootmaster# niscat -o [name=rootmaster],hosts.org_dir.doc.com.
Object Name : hosts
Owner : rootmaster.doc.com.
Group : admin.doc.com.
Domain : org_dir.doc.com.
Access Rights : ----rmcdr---r---
Time to Live : 12:0:0
Object Type : ENTRY

Entry data of type hosts_tbl
Entry has 4 columns.
.

#

The nismatch and nisgrep
Commands
The nismatch and nisgrep commands search through NIS+ tables for entries that
match a particular string or regular expression, respectively. They display either the
entries themselves or a count of how many entries matched. The differences between
the nismatch and nisgrep commands are highlighted in Table 14–6 below.

TABLE 14–6 Characteristics of nismatch and nisgrep

Characteristics nismatch nisgrep

Search criteria Accepts text only Accepts regular expressions

Speed Faster Slower

Searches
through

Searchable columns only All columns, whether searchable or
not

Syntax of search
criteria column=string ... tablename[

column= string,...], tablename
column=exp ... tablename

The tasks and examples in this section describe the syntax for both commands.

To use either command, you must have read access to the table you are searching
through.

238 Solaris Naming Administration Guide ♦ May 1999

The examples in this section are based on the values in the following table, named
depts.doc.com. Only the first two columns are searchable.

Name (S) Site (S) Name

R&D SanFran kuznetsov

Sales SanFran jhill

Manf-1 Emeryville hosteen

Manf-2 Sausalito lincoln

Shipping-1 Emeryville tsosulu

Shipping-2 Sausalito katabami

Service Sparks franklin

About Regular Expressions
Regular expressions are combinations of text and symbols that you can use to search
for special configurations of column values. For example, the regular expression
‘Hello’ searches for a value that begins with Hello . When using a regular
expression in the command line, be sure to enclose it in quotes, since many of the
regular expression symbols have special meaning to the Bourne and C shells. For
example:

rootmaster% nisgrep -h greeting=’Hello’ phrases.doc.com.

The regular expression symbols are summarized in Table 14–7, below.

TABLE 14–7 Regular Expression Symbols

Symbol Description

^ string Find a value that begins with string.

string $
Find a value that ends with string.

. Find a value that has a number characters equal to the number of periods.

[chars] Find a value that contains any of the characters in the brackets.

* expr Find a value that has zero or more matches of the expr.

Administering NIS+ Tables 239

TABLE 14–7 Regular Expression Symbols (continued)

Symbol Description

+ Find something that appears one or more times.

? Find any value.

\’ s-char’ Find a special character, such as ? or $.

x | y Find a character that is either x or y.

Syntax
To search through the first column, use:

nismatch string tablename
nisgrep reg-exp tablename

To search through a particular column, use:

nismatch column=string tablename
nisgrep column=reg-exp tablename

To search through multiple columns, use:

nismatch column=string tablename ...\
nismatch [column=string,...], tablename
nisgrep column=reg-exp ... \

tablename

240 Solaris Naming Administration Guide ♦ May 1999

TABLE 14–8 nismatch and nisgrep Options

Option Description

−c
Count. Instead of the entries themselves, displays a count of the entries that
matched the search criteria.

−h
Header. Displays a header line above the entries, listing the name of each
column.

−M
Master. Displays only the entries of the table stored on the master server.
This ensures you get the most up-to-date information and should be used
only for debugging.

Searching the First Column
To search for a particular value in the first column of a table, simply enter the first
column value and a tablename. In nismatch , the value must be a string. In nisgrep ,
the value must be a regular expression.

nismatch [-h] string tablename
nisgrep [-h] reg-expression tablename

This example searches through the depts table for all the entries whose first column
has a value of R&D:

rootmaster% nismatch -h ‘R&D’ depts.doc.com.
rootmaster% nisgrep -h ‘R&D’ depts.doc.com.

Note - Quotes are used in the ’R&D’ expression above to prevent the shell from
interpreting the ampersand (&) as a metacharacter.

Searching a Particular Column
To search through a particular column other than the first, use the following syntax:

Administering NIS+ Tables 241

nismatch column=string tablename
nisgrep column=reg- expression tablename

This example searches through the depts table for all the entries whose second
column has a value of SanFran :

rootmaster% nismatch -h Site=SanFran depts.doc.com
rootmaster% nisgrep -h Site=SanFran depts.doc.com

Searching Multiple Columns
To search for entries with matches in two or more columns, use the following syntax:

nismatch [-h] [column=string, ... \
column=string,...], tablename

nisgrep [-h] column=reg-exp ... \
tablename

This example searches for entries whose second column has a value of SanFran and
whose third column has a value of jhill :

rootmaster% nismatch -h [Site=SanFran,Name=jhill], depts.doc.com.
rootmaster% nisgrep -h Site=SanFran Name=jhill depts.doc.com.

The nisln Command
The nisln command creates symbolic links between NIS+ objects such as tables and
directories. All NIS+ administration commands accept the −L flag, which directs
them to follow links between NIS+ objects.

Note - Do not link table entries. Tables may be linked to other tables, but do not link
an entry in one table to an entry in another table.

To create a link to another object (table or directory), you must have modify rights to
the source object; that is, the one that will point to the other object or entry.

242 Solaris Naming Administration Guide ♦ May 1999

Caution - Never link a cred table. Each org_dir directory should have its own
cred table. Do not use a link to some other org_dir cred table.

Syntax
To create a link, use:

nisln source target

TABLE 14–9 nisln Options

Option Description

−L
Follow links. If the source is itself a link, the new link will not be linked to it,
but to that link’s original source.

−D
Defaults. Specify a different set of defaults for the linked object. Defaults are
described in “Specifying Nondefault Security Values at Creation Time” on
page 145.

Creating a Link
To create a link between objects such as tables and directories, specify both object
names: first the source, and then the target. Do not link table entries.

nisln source-object target-object

The nissetup Command
The nissetup command expands an existing NIS+ directory object into a domain
by creating the org_dir and groups_dir directories, and a full set of NIS+ tables.
It does not, however, populate the tables with data. For that, you will need the

nisaddent command, described in “The nisaddent Command” on page 245.
Expanding a directory into a domain is part of the process of setting up a domain.

Administering NIS+ Tables 243

Note - When setting up a new NIS+ domain, the nisserver script is easier to use
than the nissetup command. See Solaris Naming Setup and Configuration Guide
for a full description of using nisserver.

The nissetup command can expand a directory into a domain that supports NIS
clients as well.

To use nissetup , you must have modify rights to the directory under which you’ll
store the tables.

Expanding a Directory Into an NIS+ Domain
You can use the nissetup command with or without a directory name. If you don’t
supply the directory name, it uses the default directory. Each object that is added is
listed in the output.

rootmaster# /usr/lib/nis/nissetup doc.com.
org_dir.doc.com. created
groups_dir.doc.com. created
auto_master.org_dir.doc.com. created
auto_home.org_dir.doc.com. created
bootparams.org_dir.doc.com. created
cred.org_dir.doc.com. created
ethers.org_dir.doc.com. created
group.org_dir.doc.com. created
hosts.org_dir.doc.com. created
mail_aliases.org_dir.doc.com. created
sendmailvars.org_dir.doc.com. created
netmasks.org_dir.doc.com. created
netgroup.org_dir.doc.com. created
networks.org_dir.doc.com. created
passwd.org_dir.doc.com. created
protocols.org_dir.doc.com. created
rpc.org_dir.doc.com. created
services.org_dir.doc.com. created
timezone.org_dir.doc.com. created

Expanding a Directory Into an NIS-Compatible
Domain
To expand a directory into a domain that supports NIS+ and NIS client requests, use
the −Y flag. The tables are created with read rights for the nobody class so that NIS
clients requests can access them.

rootmaster# /usr/lib/nis/nissetup -Y Test.doc.com.

244 Solaris Naming Administration Guide ♦ May 1999

The nisaddent Command
The nisaddent command loads information from text files or NIS maps into NIS+
tables. It can also dump the contents of NIS+ tables back into text files. If you are
populating NIS+ tables for the first time, see the instructions in Solaris Naming Setup
and Configuration Guide. It describes all the prerequisites and related tasks.

You can use nisaddent to transfer information from one NIS+ table to another (for
example, to the same type of table in another domain), but not directly. First, you
need to dump the contents of the table into a file, and then load the file into the
other table. Be sure, though, that the information in the file is formatted properly.
Appendix C, describes the format required for each table.

When you load information into a table, you can use any of three options: replace,
append, or merge. The append option simply adds the source entries to the NIS+
table. With the replace option, NIS+ first deletes all existing entries in the table and
then adds the entries from the source. In a large table, this adds a large set of entries
into the table’s .log file (one set for removing the existing entries, another for
adding the new ones), taking up space in /var/nis and making propagation to
replicas time consuming.

The merge option produces the same result as the replace option but uses a different
process, one that can greatly reduce the number of operations that must be sent to
the replicas. With the merge option, NIS+ handles three types of entries differently:

� Entries that exist only in the source are added to the table

� Entries that exist in both the source and the table are updated in the table

� Entries that exist only in the NIS+ table are deleted from the table

When updating a large table with a file or map whose contents are not greatly
different from those of the table, the merge option can spare the server a great many
operations. Because the merge option deletes only the entries that are not duplicated
in the source (the replace option deletes all entries, indiscriminately), it saves one
delete and one add operation for every duplicate entry.

If you are loading information into the tables for the first time, you must have create
rights to the table object. If you are overwriting information in the tables, you must
have modify rights to the tables.

Syntax
To load information from text files, use:

/usr/lib/nis/nisaddent -f filename table-type\[domain]
/usr/lib/nis/nisaddent -f filename \

Administering NIS+ Tables 245

(Continuation)

-t tablename table-type [domain]

To load information from NIS maps, use:

/usr/lib/nis/nisaddent -y NISdomain table-type\
[domain]

/usr/lib/nis/nisaddent -y NISdomain -t tablename table-type [domain]
/usr/lib/nis/nisaddent -Y map table-type [domain]
/usr/lib/nis/nisaddent -Y map -t tablename table-type [domain]

To dump information from an NIS+ table to a file, use:

/usr/lib/nis/nisaddent -d [-t tablename tabletype] \
> filename

Loading Information From a File
You can transfer the contents of a file into an NIS+ table in several different ways:

� The −f option with no other option replaces the contents of table-type in the local
domain with the contents of filename.

nisaddent -f filename table-type

� With the −a option, −f appends the contents of filename to table-type.

nisaddent -a -f filename table-type

� With the −moption, −f merges the contents of filename into the contents of table-type.

nisaddent -m -f filename table-type

The following two examples load the contents of a text file named
/etc/passwd.xfr into the NIS+ Passwd table. The first is into a table in the local
domain, the second into a table in another domain:

246 Solaris Naming Administration Guide ♦ May 1999

rootmaster# /usr/lib/nis/nisaddent -f /etc/passwd.xfr passwd
rootmaster# /usr/lib/nis/nisaddent -f /etc/shadow.xfr shadow
rootmaster# /usr/lib/nis/nisaddent -f /etc/passwd.xfr passwd sales.doc.com.
rootmaster# /usr/lib/nis/nisaddent -f /etc/shadow.xfr shadow sales.doc.com.

Note - When creating an NIS+ passwd table from /etc files, you must run
nisaddent twice; once on the /etc/passwd file and once on the /etc/shadow file.

Another way is to use stdin as the source. However, you cannot use the −moption
with stdin . You can use redirect (−>) or pipe (−|), but you cannot pipe into another
domain.

Task Command

Redirect cat filename > nisaddent table-type

Redirect with append
option

cat filename > nisaddent -a table-type

Redirect with append
into another domain

cat filename > nisaddent -a table-type NIS+ domain

Pipe cat filename | nisaddent table-type

Pipe with append option cat filename | nisaddent -a table-type

If the NIS+ table is an automounter table or a nonstandard table, add the −t option
and the complete name of the NIS+ table.

master# nisaddent -f /etc/auto_home.xfr \
-t auto_home.org_dir.doc.com. key-value

master# nisaddent -f /etc/auto_home.xfr \
-t auto_home.org_dir.doc.com. key-value sales.doc.com.

Loading Data From an NIS Map
You can transfer information from an NIS map in two different ways; either by
specifying the NIS domain or by specifying the actual NIS map. If you specify the
domain, NIS+ will figure out which map file in /var/yp/ nisdomain to use as the
source, based on the table-type. Note that /var/yp/ nisdomain must be local files.

Administering NIS+ Tables 247

NIS+ Table Type NIS Map Name

Hosts hosts.byaddr

Passwd passwd.byname

Group group.byaddr

Ethers ethers.byname

Netmasks netmasks.byaddr

Networks networks.byname

Protocols protocols.byname

RPC rpc.bynumber

Services services.byname

To transfer by specifying the NIS domain, use the −y (lowercase) option and provide
the NIS domain in addition to the NIS+ table type.

Table replacement

nisaddent -y nisdomain table-type

Table append

nisaddent -a -y nisdomain table-type

Table merge

nisaddent -m -y nisdomain table-type

By default, nisaddent replaces the contents of the NIS+ table with the contents of
the NIS map. Use the −a and −moptions to append or merge. Here is an example
that loads the NIS+ passwd table from its corresponding NIS map
(passwd.byname) in the old-doc domain:

rootmaster# /usr/lib/nis/nisaddent -y old-doc passwd

This example does the same thing, but for the sales.doc.com. domain instead of
the local domain, doc.com.

248 Solaris Naming Administration Guide ♦ May 1999

rootmaster# /usr/lib/nis/nisaddent -y old-doc passwd sales.doc.com.

If the NIS+ table is an automounter table or a nonstandard table, add the −t option
and the complete name of the NIS table, just as you would if the source were a file.

rootmaster# nisaddent -y old-doc \
-t auto_home.org_dir.doc.com. key-value

rootmaster# nisaddent -y old-doc \
-t auto_home.org_dir.doc.com. key-value sales.doc.com.

If instead of using the map files for a domain, you prefer to specify a particular NIS
map, use the −Y (uppercase) option and specify the map name.

rootmaster# nisaddent -Y hosts.byname hosts
rootmaster# nisaddent -Y hosts.byname hosts sales.doc.com.

If the NIS map is an automounter map or a non standard map, combine the −Y
option with the −t option:

rootmaster# nisaddent -Y auto_home
-t auto_home.org_dir.doc.com. key-value

rootmaster# nisaddent -Y auto_home
-t auto_home.org_dir.doc.com. key-value sales.doc.com.

Dumping the Contents of an NIS+ Table to a File
To dump the contents of an NIS+ table into a file, use the − d and −t options. The
−d options tells the command to dump, and the −t option specifies the NIS+ table:

rootmaster# nisaddent -Y auto_home
-t auto_home.org_dir.doc.com. key-value

rootmaster# nisaddent -Y auto_home
-t auto_home.org_dir.doc.com. key-value sales.doc.com.

Administering NIS+ Tables 249

250 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 15

Server-Use Customization

This chapter describes how to customize and control which servers NIS+ clients use.

� “NIS+ Servers and Clients” on page 251

� “NIS+ Over Wide Area Networks” on page 252

� “Optimizing Server-Use—Overview ” on page 253

� “Using the nisprefadm Command ” on page 257

� “Viewing Current Server Preferences” on page 259

� “How to Specify Preference Rank Numbers ” on page 260

� “Specifying Global Server Preferences ” on page 260

� “Specifying Local Server Preferences ” on page 263

� “Modifying Server Preferences ” on page 264

� “How to Remove Servers From Preference Lists ” on page 265

� “How to Replace an Entire Preferred Server List ” on page 266

� “Specifying Preferred-Only Servers” on page 266

� “Ending Use of Server Preferences” on page 268

� “Putting Server Preferences Into Immediate Effect ” on page 270

NIS+ Servers and Clients
When client machines, users, applications, or processes need NIS+ information, they
seek an active NIS+ server (master or replica) from which to get the needed data. On
large networks, networks with many subnets, and networks that span wide-area
links, you may be able to improve NIS+ performance by customizing server usage.

251

Default Client Search Behavior
By default, if no server preferences have been set with the nisprefadm command, a
client will first try to obtain the information it needs from an NIS+ server on the
client’s local subnet. If the client finds an active server on the local subnet, it obtains
the information it needs from the first local server that responds. If no server is
available on the local subnet, the client searches outside the local subnet, and obtains
the NIS+ information it needs from the first remote server that responds.

On large, busy networks, this default search behavior may reduce NIS+ performance
for one of two reasons:

� When multiple servers on a subnet are serving a large number of clients, the
random nature of the client’s default search pattern may result in some servers
being over worked while others are under used.

� When a client has to seek an NIS+ server beyond the local subnet, it will obtain its
information from the first server that responds even if that server is overworked,
or linked to the client’s subnet by a slower Wide Area Network connection such as
a modem or a dedicated line that is already carrying heavy traffic.

Designating Preferred Servers
The Solaris 2.6 release contains a new feature—server-use customization—that allows
you to control the order in which clients search for NIS+ servers. With this new
feature you can balance and customize server usage by:

� Specifying that clients prefer (search for) certain servers over others.

� Specify whether or not clients are permitted to use remote servers if no local
servers are available.

The search criteria that you specify can be applied to all clients within a domain, all
clients on a subnet, or to individual clients on a machine-by-machine basis.

Note - When server-use preferences are set for a particular machine, those
preferences apply to all users, applications, processes, or other clients running on
that machine. You cannot set different server-use patterns for different clients on the
same machine.

NIS+ Over Wide Area Networks
Server-use customization is particularly valuable for large networks with many
subnets and networks that span multiple geographic sites connected by modems or
leased lines. To maximize network performance, you want to minimize network

252 Solaris Naming Administration Guide ♦ May 1999

traffic between subnets, and between sites linked by slower connections. You can do
that by specifying which NIS+ servers the clients can use, and their order of server
preference. In this way you confine as much NIS+ network traffic as possible to the
local subnet.

Optimizing Server-Use—Overview
This section provides an overview of server-use customization.

nis_cachemgr is Required
Server-use customization requires that a client be running nis_cachemgr . If a client
machine is not running nis_cachemgr , it cannot make use of server-use
customization. If there is no nis_cachemgr running on a client machine, that client
will use the first server it identifies as described in “Default Client Search Behavior”
on page 252.

Global Table or Local File
Depending on how you use the nisprefadm command, it creates either a local
client_info file or a domain client_info table:

� File. You can use nisprefadm to create a local, machine-specific client_info
file that is stored in the machine’s /var/nis directory. A local file specifies server
preferences for that machine only. When a machine has a local
/var/nis/client_info file, it ignores any server preferences contained in a
domain client_info.org_dir table. To create a local client_info file, you
run nisprefadm with the −L option.

� Table. You can use nisprefadm to create an NIS+ client_info table which is
stored in each domain’s org_dir NIS+ directory object. This table can specify
server preferences for:

� Individual machines. (If a machine has a local /var/nis/client_info file,
any preferences for that machine that happen to be in the domain
client_info table are ignored.)

� All the machines on a particular subnet. (If a machine on the subnet has a local
/var/nis/client_info file or individual preferences set for it in the table it
ignores subnet preferences.)

Server-Use Customization 253

To create a global client_info table that applies to all machine on a subnet, you
run nisprefadm with the −G and −C options as described in “Specifying Global
Server Preferences ” on page 260.

Note that if a machine has its own local client_info file as described below, it
will ignore all server preferences set for it in a global client_info table. If a
machine has either a local client_info file or a machine-specific entry for it in
the global client_info table, it will ignore preferences set for its subnet.

Caution - Use only the nisprefadm command to make changes to client_info
files and tables. Never use other NIS+ commands such as nistbladm .

When working with client_info tables or files, you must use either the −G or the
−L option to specify that your command apply to either the global table (−G) or local
file (−L) of the machine you are running the command on.

Preference Rank Numbers
Server preferences are controlled by giving each server a preference rank number.
Clients search for NIS+ servers in order of numeric preference, querying servers with
lower preference rank numbers before seeking servers with higher numbers.

Thus, a client will first try to obtain namespace information from NIS+ servers with a
preference of zero. If there are no preference=0 servers available, then the client will
query servers whose preference=1. If no 1’s are available, it will try to find a 2, and
then a 3, and so on until it either gets the information it needs or runs out of servers.

Preference rank numbers are assigned to servers with the nisprefadm command as
described in “Specifying Global Server Preferences ” on page 260.

Server preference numbers are stored in client_info tables and files. If a machine
has its own /var/nis/client_info file, it uses the preference numbers stored in
that file. If a machine does not have its own client_info file, it uses the preference
numbers stored in the domain’s client_info.org_dir table. These
client_info tables and files are called “preferred server lists” or simply server lists.

You customize server usage by controlling the server preferences of each client. For
example, suppose a domain has a client machine named mailer that makes heavy
use of namespace information and the domain has both a master server (nismaster)
and a replica server (replica1). You could assign a preference number of 1 to
nismaster and a number of 0 to replica1 for the mailer machine. The mailer
machine would then always try to obtain namespace information from replica1
before trying nismaster . You could then specify that for all the other machines on
the subnet the nismaster server had a preference number of zero and replica1
the number 1. This would cause the other machine to always try nismaster first.

254 Solaris Naming Administration Guide ♦ May 1999

You can give the same preference number to more than one server in a domain. For
example, you could assign both nismaster1 and replica2 a preference number of
0, and assign replica3 , replica4 , and replica5 a preference number of 1.

Default Server Preferences
If there is no client_info file or table, the cache manager automatically assigns all
servers on the local subnet a default preference number of zero (0) and all servers
outside the local subnet a preference of infinite. The purpose of nisprefadm is to
change these default preference numbers to what you want them to be.

Efficiency and Server Preference Numbers
A client must seek all servers with a given preference number before searching for
servers with the next higher number. It requires 5 or more seconds for a client to
search for all the servers with a given preference number. This means that if you
have a master server and 4 replicas in a domain, and you give each one a different
preference number from 0 to 4, it could take a client more than 25 seconds to run
through all of those preference levels.

To maximize performance, you should not use more than two or three levels of
server preference. For example, in the case described above, it is better to give one of
those five servers a preference=0 and all the others a preference of 1, or give two of
them a preference of 1 and the remaining three a preference of 2.

Preferred Only Servers Versus All Servers
Server lists also specify what a client does if it cannot find any preferred servers. A
preferred server is any server with a preference of zero, or any server that you have
assigned a preference number with nisprefadm .

By default, if a client fails to reach a preferred server, it will then seek out any server
it can find anywhere on the network using the search mode described in “Default
Client Search Behavior” on page 252. You can change this default behavior with the
nisprefadm −o option to specify that a client can only use preferred servers and if
no servers are available it cannot go to non-preferred servers. See “Specifying
Preferred-Only Servers” on page 266 for details.

Note - This option is ignored when the machine’s domain is not served by any
preferred servers.

Server-Use Customization 255

Viewing Preferences
To view the server preferences currently in effect for a particular client machine, you
run nisprefadm with the −l option as described in “Viewing Current Server
Preferences” on page 259.

Server and Client Names
When specifying server or client machines, keep in mind the following points:

� Server and client names do not need to be fully qualified so long as they are in the
same NIS+ domain and uniquely identify the object. You can simply use the
machine name by itself.

� If a server or subnet is in another NIS+ domain, you need to include enough of
the domain name to uniquely identify that machine. For example, if you are in the
sales.doc.com domain and you need to specify the nismaster2 machine in
the manf.doc.com domain, you need only enter nismaster2.manf .

Server Preferences
To specify a server preference for:

� Individual client machine, use the −L option to create a local client_info file for
the machine you are running the nisprefadm on. Use the −G−C machine options
to create machine-specific preferences in the global client_info table.

� All machines on a subnet, use the −G −C subnetnumber option.

� All machines in the current domain that do not have machine-specific or subnet-specific
preferences, use the −G option.

When Server Preferences Take Effect
Changes you make to a machine or subnet’s server preferences normally do not take
effect on a given machine until that machine updates it nis_cachemgr data. When
the nis_cachemgr of a machine updates its server-use information depends on
whether the machine is obtaining its server preferences from a global client_info
table or a local /var/nis/client_info file (see “Global Table or Local File ” on
page 253):

� Global table. The cache managers of machines obtaining their server preferences
from global tables update their server preferences whenever the machine is booted
or whenever the Time-to-live (TTL) value expires for the client_info table. By
default, this TTL value is 12 hours, but you can change that as described in
“Changing the Time-to-Live of an Object” on page 217.

256 Solaris Naming Administration Guide ♦ May 1999

� Local file. The cache managers of machines obtaining their server preferences from
local files update their server preferences every 12 hours or whenever you run
nisprefadm to change a server preference. (Rebooting the machine does not
update the cache manager’s server preference information.)

However, you can force server preference changes to take effect immediately by
running nisprefadm with the −F option. The −F option forces nis_cachemgr to
immediately update its information. See “How to Immediately Implement Preference
Changes ” on page 270 for details.

Using the nisprefadm Command
The following sections describe how to use the nisprefadm command to set,
modify, and delete server preferences.

The nisprefadm command is used to specify the servers that clients are to prefer.

The nisprefadm command has the following syntax:

nisprefadm -a|-m|-r|-u|-x|-l -L|-G [-o type] \
[-d domain] \
[-C machine] \
servers

nisprefadm -F

TABLE 15–1 nisprefadm Command Options

Option Description

−G
Create a global client_info table stored in the domain’s org_dir
directory. In other words, create a global preferred server list. This
option must be used with either −C subnet to specify preferences for all
the machines on a given subnet, or −C machine to specify preferences for
an individual machine.

−L
Create a local client_info file stored in the local machine’s /var/
nis directory. In other words, create a preferred server list that applies
only to the machine you are running the command on.

−o type
Specify an option. The valid options are: pref_type=all , which
specifies that clients can use non-preferred servers if no preferred
servers can be contacted, and pref_type=pref_only , which specifies
that clients may only use the designated preferred servers.

Server-Use Customization 257

TABLE 15–1 nisprefadm Command Options (continued)

Option Description

−d domain
Create a global preferred server client_info table for the specified
domain or subdomain.

−C subnet
The number of a subnet to which the preferences will apply.

−C machine
The name of a client machine.

servers
One or more NIS+ servers. These are the servers that are to be preferred.

−a
Add the specified servers to the server list.

−m
Modify the server list. For example, you can use the −moption to change
the preference number given to one or more servers.

−r
Remove the specified servers from the server list.

−u
Clear the server list, and then add the specified servers. (In other words,
replace the current server list with a new list of preferred servers.)

−x
Remove the server list completely.

−l
List (display) the current preferred server information.

−F
Force changes to a preferred server list to take effect immediately.

258 Solaris Naming Administration Guide ♦ May 1999

Note - The −C machine option should not be used with the −L (local) flag because it
has no effect. For example, suppose you are running nisprefadm on the altair
machine. You use the −L flag to specify that the preferences you are specifying be
written into altair ’s local client_info file. You also use a −C vega option to
specify that the preferences you are creating be applied to the vega machine. The
nisprefadm command then write your preferences for vega into altair ’s file. But
vega will never see them because vega will always get its server preferences from
either its own local client_info file or the domain’s global client_info table.
Thus, it only makes sense to use the −C option when running nisprefadm with the
−G (global) flag

Viewing Current Server Preferences
To view current server preferences, run nisprefadm with the -l option.

How to View Preferences for a Machine
♦ Run nisprefadm with the −L and −l options on the machine.

sirius# nisprefadm -L -l

This displays any server preferences defined in the machine’s local
/var/nis/client_info file. If there is no local file, no information is displayed
and you are returned to your shell prompt.

How to View Global Preferences for Single
Machine
♦ Run nisprefadm with the −l , −G and −C machinename options.

sirius# nisprefadm -G -l -C machinename

Where machinename is the IP address (number) of the machine.

Server-Use Customization 259

This displays the preferences set in the domain’s global client_info table for that
machine.

How to View Global Preferences for a Subnet
♦ Run nisprefadm with the −l , −G and −C subnet options.

sirius# nisprefadm -G -l -C subnet

Where subnet is the IP address (number) of the subnet.

This displays the preferences set in the domain’s global client_info table for that
machine.

How to Specify Preference Rank
Numbers
By default, all servers listed after the −a option are given a preference number of
zero. To specify a different preference number, enclose the number in parentheses
immediately after the server name like this: −a name(n) . Where name is the name of
the server and n is the preference number.

For example, assign the replica2 server a preference number of 3:

nisprefadm -G -a replica2(3)

Note - With some shells you may have to enclose the element in quotes like this:
"name(n)" .

See “Preference Rank Numbers ” on page 254 for background information on the
server preference rank numbers.

Specifying Global Server Preferences
You can set global server preferences for a local or remote domain. Preferences may
be set for individual machines and all the machines on a subnet.

260 Solaris Naming Administration Guide ♦ May 1999

The procedures in this section describe how to specify server preferences in a global
client_info table residing on the NIS+ domain’s master server. Once the table
exists on the master server, NIS+ replicates it on to any existing replica servers for
the domain.

� See “Specifying Local Server Preferences ” on page 263 for information on how to
create a local client_info file on an individual machine.

� See “Global Table or Local File ” on page 253 for an explanation of the difference
between a global client_info table and a local client_info file.

To assign server preference numbers, run nisprefadm with either the:

� −a option to add new or additional preferred servers.

� −u option to delete existing server preferences and create new ones.

How to Set Global Preferences for a Subnet
To assign server preferences in the global table for all the machines on a subnet:

♦ Run nisprefadm with the −G and −C subnet options.

#nisprefadm -G -a -C subnet servers (preferences)

Where:

� −C subnet identifies the IP number of the subnet the preferences will apply to.

� servers(preferences) are one or more servers with optional preference ranking
numbers.

For example, to specify that the subnet 123.123.123.123 use the nismaster
and replica3 servers with default preference number s of zero and the
manf.replica6 server with a preference number of 1:

polaris# nisprefadm -a -G -C 123.123.123.123 nismaster1 \
replica3 "manf.replica6(1)"

How to Set Global Preferences for an Individual
Machine
♦ Run nisprefadm with the −G, and −C machine options.

#nisprefadm -G -a -C machine servers (preferences)

Server-Use Customization 261

Where:

� −C machine identifies the machine the preferences will apply to. (Depending on the
shell you are using, you may need to enclose machine in quotes.)

� servers(preferences) are one or more servers with optional preference ranking
numbers.

For example, to replace the current preferences for the machine cygnus with
replica7 and replica9 both with a default preference number of zero:

polaris# nisprefadm -u -G -C cygnus replica7 replica9

How to Set Global Preferences for a Remote
Domain
To assign server preferences for an individual machine in a remote domain or all the
machines on a subnet in a remote domain:

♦ Run nisprefadm with the −C, −G, and −d options.

#nisprefadm -a -G -C name \
-d domain servers(preferences)

Where:

� name is the IP number of a subnet or the name of a machine. The modifications
you make with this command apply to the subnet or machine that you name.

� domainname is the name of the remote domain.

� servers(preferences) are one or more servers with optional preference ranking
numbers.

For example, to add the nismaster2 server with a default preference number of
zero to the preferred server list of the 111.11.111.11 subnet in the remote
sales.doc.com domain:

polaris# nisprefadm -a -G -C 111.11.111.11 -d sales.doc.com. nismaster2

262 Solaris Naming Administration Guide ♦ May 1999

Specifying Local Server Preferences
These procedures explain how to create or change a local client_info file that
specifies server preferences for the machine on which it resides.

If a machine has a local /var/nis/client_info file, that machine takes its server
preferences from its local file rather than the global client_info tables on NIS+
servers. In other words, a local file overrides any global table.

� See “Specifying Global Server Preferences ” on page 260 for information on how to
create a global client_info tables for NIS+ servers.

� See “Global Table or Local File ” on page 253 for an explanation of the difference
between a global client_info table and a local client_info file.

To assign server preferences, run nisprefadm with either the:

� −a option to add new or additional preferred servers.

� −u option to delete existing server preferences and create new ones.

How to Set Preferences on a Local Machine
To assign server preferences for the local machine that you are running the
nisprefadm command on:

♦ Run nisprefadm with the −L option and either the −a or −u options.

#nisprefadm -a -L servers(preferences)

Where servers(preferences) are one or more servers with optional preference ranking
numbers.

For example, to specify that the deneb machine first seek NIS+ information from the
replica3 server with a default preference number of zero and then from the
replica6 server (with a preference number of 1) in the manf.doc.com domain:

deneb# nisprefadm -a -L replica3 replica6.manf(1)

Server-Use Customization 263

Modifying Server Preferences
You can change a server’s preference number and switch (replace) the preference
numbers assigned to different servers.

To change preferred servers or the preference number assigned to a server, run
nisprefadm with the −moldserver−=newserver(n) option.

How to Change a Server’s Preference Number
♦ Run nisprefadm with the −m server=server(new) option.

#nisprefadm -L|-G -C name -m oldserver=newserver(n)

Where:

� -L|-G determines whether you are modifying a local file or a global table.

� −C name is the IP number of a subnet or the name of a machine. This option is
only used when you are also using the −G option. The modifications you make
with this command apply to the subnet or machine that you name.

� −mis the modify server list option.

� old server is the name of the server whose preference number you want to change.

� new server(n) is the server name and its new preference number.

For example, on the deneb machine, to change the number given to the
replica6.manf server to 2 in deneb ’s local client_info file:

deneb# nisprefadm -L -m replica6.manf=replica6.manf(2)

How to Replace One Server With Another in a
Preference List
To change one server for another in a preference list:

♦ Run nisprefadm with the −moldserver=newserver option.

#nisprefadm -L|-G -C name -m \
oldserver=newserver(prefnumber)

264 Solaris Naming Administration Guide ♦ May 1999

Where:

� -L|-G determine whether you are modifying a local or a domain-wide server list.

� −C name is the IP number of a subnet or the name of a machine. This option is
only used in when you are also using the −G option. The modifications you make
with this command apply to the subnet or machine that you name.

� −mis the modify-server-list option.

� oldserver is the old server you are replacing.

� newserver(prefnumber) is the new server (with an optional preference number) that
is taking the old server’s place in the preferred server list.

Keep in mind that when you replace a server in a global client_info table using
the −G option, the replacement only applies to the subnet or machine identified by
the −C option. Other listings of the replaced server are not affected.

For example, suppose you have a domain with three subnets, and the replica1
server is listed as a preferred server for two of those subnets. If replica1 is
obsolete and you take it out of service, you then run nisprefadm −mto replace it
with the new server for the first subnet. Until you do the same for the second subnet,
replica1 is still listed as a preferred server for that subnet. The same principle
applies to preferred servers for individual machines.

For example, to replace the replica3 server with the replica6 server for subnet
123.12.123.12 in the domain’s global client_info table and assign replica6
a preference number of 1:

nismaster# nisprefadm -G -C 123.12.123.12 -m replica3 replica6(1)

How to Remove Servers From
Preference Lists
To remove one or more servers from a preference list:

♦ Run nisprefadm with the −r option.

#nisprefadm -L|-G -C name -r servers

Where:

� -L|-G determines whether you are modifying a local or a domain-wide server list.

Server-Use Customization 265

� −C name is the IP number of a subnet or the name of a machine. This option is
only used when you are also using the −G option. The preferred servers you
remove with this command apply to the subnet or machine that you name.

� −r removes the named servers from the list.

For example, in the domain’s global client_info table, to remove the replica3
and replica6.manf servers for the machine polaris :

polaris# nisprefadm -G -C polaris -r replica3 replica6.manf

How to Replace an Entire Preferred
Server List
To replace an entire list of preferred servers for a subnet or machine in either a global
client_info table or a machine in its local client_info file, run nisprefadm
with the −u option.

The −u option operates the same way as the −a option, except that −u first deletes
any existing server preferences for the machine or subnet before adding the new
ones that you specify. (If there are existing preferences, the −a option adds the new
ones to the old list.)

See “How to Set Global Preferences for an Individual Machine ” on page 261 for an
example using the −u option.

Specifying Preferred-Only Servers
You can specify what clients do when no preferred servers are available.

By default, if a client cannot reach a preferred server, it uses whatever other server it
can find. You can specify that clients may only use preferred servers by setting the
preferred-only option. See “Preferred Only Servers Versus All Servers” on page 255
for background information on the preferred-only and all servers options.

To specify what clients do when no preferred servers are available, run nisprefadm
with the −o value option.

266 Solaris Naming Administration Guide ♦ May 1999

How to Specify Preferred-Only Servers
To specify that clients using a server list may only obtain NIS+ information from
servers named in the list:

♦ Run nisprefadm with the -o pref_only option.

#nisprefadm -L|-G -o pref_only

Where:

� −L|−Gdetermines whether you are modifying a local or a domain-wide server list.

� −o −pref_only specifies that clients can only obtain NIS+ information from
servers on the list.

Note - This option is ignored for domains that are not served by any preferred
servers.

For example, to specify in altair ’s local client_info file that altair must
always use preferred servers and cannot use any server not on altair ’s preferred
server list:

altair# nisprefadm -L -o pref_only

How to Revert to Using Non-Preferred Servers
To specify that clients using a server list may obtain NIS+ information from servers
not named in the list if no preferred servers are available:

♦ Run nisprefadm with the −o all option.

#nisprefadm -L|-G -o all

Where:

� −L|-G determines whether you are modifying a local or a domain-wide server list.

� −o −all specifies that clients may obtain NIS+ information from servers not on
the list if no preferred servers are available.

Note - This is the default behavior. You only need to use the −o all option if you
have previously specified preferred-only servers with the −o pref_only option.

For example, to specify in altair ’s local client_info file that altair can now
use non-preferred servers if no preferred servers can be reached:

altair# nisprefadm -L -o all

Server-Use Customization 267

Ending Use of Server Preferences
You can stop using server-use customization and revert to the obtaining NIS+
information as described in “Default Client Search Behavior” on page 252.

To end server preferences, run nisprefadm with the −x option.

Note - When you end server preferences, clients do not stop using server preferences
until the normal course of events as described “When Server Preferences Take Effect”
on page 256. You can force an immediate end to server preferences as described
in“Putting Server Preferences Into Immediate Effect ” on page 270.

How to Eliminate Global Server Preferences
♦ Run nisprefadm with the −G and −x options.

#nisprefadm -G -x

This eliminates global server preferences.

� Client machines that do not have local server preferences will obtain NIS+
information as described in “Default Client Search Behavior” on page 252.

� Client machines that do have local server preferences set by a local
/var/nis/client_info file will continue to use servers as specified in that file.

How to Eliminate Local Server Preferences
Ending local preferences can mean one of three different things:

� That you want the machine to stop using its local client_info file for its server
preferences and start using the preferences set for its subnet in the domain’s global
client_info table.

� That you want this machine to stop using its local client_info file for its server
preferences and start using the preferences set for it specifically in the domain’s
global client_info table.

� That you do not want the machine to use server preferences at all. When a
machine does not use server preferences, it obtains NIS+ information as described
in “Default Client Search Behavior” on page 252.

268 Solaris Naming Administration Guide ♦ May 1999

How to Switch from Local to Global Subnet Preferences
♦ Remove the machine’s /var/nis/client_info file.

rm /var/nis/client_info

This causes the machine to use the preferences specified for the machine’s subnet in
the domain’s global client_info table.

How to Switch from Local to Machine-Specific Global
Preferences
1. Remove the machine’s /var/nis/client_info file.

rm /var/nis/client_info

2. Specify preferences for the machine in the global table using the −G and −C
options.

See “How to Set Global Preferences for an Individual Machine ” on page 261.

How to Stop a Machine from Using Any Server Preferences
1. Remove the machine’s /var/nis/client_info file.

rm /var/nis/client_info

If the machine’s domain does not have a global client_info table, this step is
all you have to do. If the domain does have a client_info table, continue on to
the next step.

2. Create an empty /var/nis/client_info file.

touch /var/nis/client_info

When a machine has its own /var/nis/client_info file, it does not use
global preferences from any client_info table. If the machine has an empty
/var/nis/client_info file, it will not use any preferences at all and will
obtain NIS+ information as described in “Default Client Search Behavior” on
page 252.

Server-Use Customization 269

Putting Server Preferences Into
Immediate Effect
Server-use changes normally go into effect whenever the client machine is rebooted
or updates its cache manager.

When you use nisprefadm to set or change server preferences on a local machine
using a local client_info file (the −L option), your changes go into effect
immediately.

For machines obtaining their server preferences from a global client_info table
(the −G option) you can force server preference changes into immediate effect by
running nisprefadm a particular with the −F option.

nisprefadm -F

The −F option forces the machine’s cache manager to immediately update its server
preference information from the domain’s global client_info table. (If the
machine on which you run nisprefadm −F has its own local client_info file in
/var/nis , running nisprefadm −F on it will have no effect.)

Note - You cannot use the −F option with any other nisprefadm options. The
nisprefadm −F command must always be run by itself on the machine you want it
to apply to. You cannot use the −G option to update the cache managers of all
machines in a domain. The nisprefadm −F command must be run on each machine
individually.

How to Immediately Implement Preference
Changes
To force a newly created or modified server list into immediate effect on a given
machine:

♦ Run nisprefadm with the −F option on that machine.

nisprefadm -F

For example, to force immediate implementation of changes to vega ’s preferred
server list (whether local or global):

vega# nisprefadm -F

270 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 16

NIS+ Backup and Restore

This chapter describes how to backup and restore an NIS+ namespace.

� “Backing Up Your Namespace With nisbackup ” on page 271

� “Restoring Your NIS+ Namespace With nisrestore ” on page 277

� “Using Backup/Restore to Set Up Replicas ” on page 279

� “Replacing Server Machines ” on page 280

The NIS+ backup and restore capabilities provide a quick and easy method of
preserving and reinstalling your NIS+ namespace. These features can also be used to
simplify creation of new replica servers and reduce the time it takes to bring them
online. These tasks are performed by two commands:

� nisbackup . Backups up NIS+ directory objects

� nisrestore . Restores NIS+ directory objects.

Backing Up Your Namespace With
nisbackup
The nisbackup command backups up one or more NIS+ directory objects or an
entire namespace to a specified UNIX file system directory.

Note - The nisbackup command is always run on a master server. Never run it on
a replica server.

The nisbackup command copies the NIS+ namespace data set as of the time the
backup command is run. This recording includes all current NIS+ data and also any

271

changes entered into the NIS+ namespace by an authorized network administrator
but not yet checkpointed (posted) to the NIS+ tables. The back up operation does not
check or correct NIS+ data. If data in a table is corrupt, the corrupt data is backed up
as if it were valid data.

The nisbackup command only backs up those directory objects that the machine is
master server for. In other words, you can only use nisbackup on a master server.
You cannot use nisbackup on a replica server.

� If a machine is a master server for both a domain and a subdomain’s NIS+
directory objects, you can run nisbackup on that machine to back up both
domain and subdomain directory objects.

� However, if a machine is a master server one directory object, and a replica server
for a different directory object, you can run nisbackup to back up the directory
object that the machine is master server for, but it will not back any objects that
the machine is only a replica server for.

If the backup process is interrupted or unable to successfully complete its operation
it halts and restores all previous backup files that were stored in the target directory.

nisbackup Syntax
The nisbackup command uses the following syntax:

nisbackup [-v][-a] backupdir objects

Where:

� Backupdir is the target directory where the backup files are to be stored. For
example, /var/master1_bakup .

� Objects are the NIS+ directory objects that you want to back up. For example,
org_dir.doc.com . Multiple NIS+ directory objects can be listed separated by
spaces.

The nisbackup command takes the following options:

272 Solaris Naming Administration Guide ♦ May 1999

TABLE 16–1 Options for the nisbackup Command

Option Purpose

−v
Verbose mode. This mode provides additional information

-a All. Backs up all NIS+ directory objects that the server is master of. This includes
any sub-domain directory objects that this server is the master for. Note that
directory objects of subdomains that have their own master servers will not be
backed up.

The nisbackup command must be run on the master server for the NIS+ directory
objects you are backing up.

When specifying NIS+ directory objects to be backed up, you can use full or partially
qualified directory names.

When you back up multi-level directories, the backup files for lower level directories
are automatically placed in subdirectories of the target backup directory.

What nisbackup Backs Up
When using nisbackup, keep in mind that nisbackup is server specific. Regardless
of whether or not you use the −a option, nisbackup only backs up those directories
that the server you are running it on is master of. NIS+ directory objects that have
some other master server will not be backed up.

For example, suppose the submaster1 server is master server for the
sales.doc.com. directory objects and also a replica for the
west.sales.doc.com. directory objects. When you run nisbackup on
submaster1 , only the sales.doc.com. directory objects will be backed up.

Some of the implications of this server specific principle are:

� Entire NIS+ namespace. If you want to perform an NIS+ back up for an entire
multi-domain namespace, and your root master server is also the master server of
all subdomains, you can run nisbackup on the root master with the −a option.
However, if the root master server is not the master server of all subdomains, you
must also run nisbackup on each of the other master servers in order to obtain a
complete back up of your entire namespace.

� Sub-domains. If you are performing an NIS+ back up for one or more sub-domains,
you must run nisbackup on the subdomain’s master server. If one machine, such
as the root master, is also master of one or more subdomains, you can run
nisbackup on that machine with the −a option.

NIS+ Backup and Restore 273

� FNS ctx_dir. If you are running FNS, nisbackup will only back up your ctx_dir
directories if you run it on the ctx_dir master server and either specify that the
ctx_dir be backed up or use the −a option. If, as is common practice, your
ctx_dir and NIS+ directory objects are served by different master servers, you
must run nisbackup on both machines to back up all directories.

The Backup Target Directory
While the backup target directory must be available to the server being backed up, it
is good practice to use a target directory that is not physically mounted on the
server. That way you ensure that if the server is damaged the backup directory is
still available.

A separate target directory must be used for each master server being backed up. It
is good practice to avoid confusion by including the master server’s machine name
in the target directory name. For example, the target directory for a nisbackup run
on the master1 machine might be named /var/master1_bakup

Caution - Never back up more than one master server to a given target directory.
Always use different target directories for different master servers. This is because
each time you backup one or more NIS+ directory objects to a given target directory,
previous backup files for those NIS+ directory objects in that directory are
overwritten.

Maintaining a Chronological Sequence of NIS+
Backups
There are at least two ways to maintain an historic sequence of backup files:

� Different target directoriess. You can maintain separate target directories for each
date’s backup. For example, /var/master1_bakup/July14 , and
/var/master1_bakup/July15 , and so on. While this method is simple it
wastes disk storage space.

� File system backup. The most common method of maintaining an historical
sequence of NIS+ backups is to simply include the backup target directory in
whatever regular file system backup method that you use. To facilitate this, the
nisbackup command can be run from a crontab file, or from within the Solstice
backup routine. See your Solstice documentation for information on how to
specify that commands like nisbackup be automatically run as part of the system
backup procedure.

274 Solaris Naming Administration Guide ♦ May 1999

Backing Up Specific NIS Directories
To back up specific NIS+ directory objects, you list those directories after the target
backup directory.

For example, to backup the three org_dir directory objects for the root, sales, and
manf domains to a /master1_bakup directory, you would run nisbackup on the
master1 machine as follows:

master1# nisbackup /var/master1_bakup org_dir org_dir.sales org_dir.manf

Backing Up an Entire NIS+ Namespace
To back up an entire NIS+ namespace you run the nisbackup command on the root
master server with the −a option.

When you use the −a option, you do not specify the NIS+ directory objects to be
backed up. All NIS+ directory objects on the server and all those of subdomains
below it will be automatically backed up.

For example, to backup the doc.com. namespace to a /master1_bakup directory,
you would run nisbackup on the root master as follows:

rootmaster# nisbackup -a /var/master1_bakup

Backup Directory Structure
When you perform a back up on a domain, a subdirectory for each NIS+ directory
object is created in the backup target directory. The names of these subdirectories
match the fully qualified NIS+ directory object name including the trailing period.

If you perform a full backup of an entire NIS+ object using the −a option, then all
three of the associated directory objects (domain. org_dir .domain., and
groups_dir .domain.) are backed up and three target subdirectories are created. If
you are backing up multiple objects, subdirectories are created for every object that
you are backing up.

Note that the backup subdirectories for multiple NIS+ directory object are all
subdirectories of the parent target backup directory regardless of whether or not they
are subdomains. In other words, nisbackup does not reproduce a domain hierarchy
under the parent backup target directory, instead all of the back up subdirectories are
simple subddirectories of the target directory.

For example, if you backed up the root, sales, and manf directory objects of
doc.com. to a /var/master1_bakup directory, nine subdirectories would be
created in the /var/master1_bakup directory as shown in Figure 16–1:

NIS+ Backup and Restore 275

doc.com.

sales.doc.com.
manf.doc.com.

 /var/master1_bakup

nisbackup

 /master1_bakup/doc.com./
 /master1_bakup/groups_dir.doc.com./
 /master1_bakup/org_dir.doc.com./
 /master1_bakup/sales.doc.com./
 /master1_bakup/groups_dir.sales.doc.com./
 /master1_bakup/org_dir.sales.doc.com./
 /master1_bakup/manf.doc.com./
 /master1_bakup/groups_dir.manf.doc.com./
 /master1_bakup/org_dir.manf.doc.com./

Figure 16–1 Example directories created by nisbackup

Backup Files
The backup target directory contains a backup_list file that lists the NIS+
directory objects most recently backed up to this target directory.

Each of the subdirectories contain two files and a /data subdirectory. The three files
are:

� data.dict . An XDR encoded file containing an NIS+ data dictionary for the
NIS+ directory objects backed up to this directory.

� last.upd . A binary file containing time-stamp information about the NIS+
directory object backed up to this directory.

Each of the /data subdirectories contain one or more of the following files:

� root.object . An XDR encoded data file containing a description of the NIS+
root directory object. For example,
/master1_bakup/doc.com/data/root.object.

� root_dir. An XDR encoded file containing a description of NIS+ objects
contained in the root directory and server information for those objects. For
example, /master1_bakup/doc.com/data/root_dir .

� table.directory. An XDR encoded file containing the data that was present in an
NIS+ table at the time the backup was performed and also any data contained in
any associated NIS+ log files. If there is an NIS+ table in the NIS+ directory object
being backed up, a corresponding table.directory backup file will be created in the
/data subdirectory for that directory object.

For example, every NIS+ org_dir directory contains a hosts table so there will
be a hosts.org_dir file in each target/org_dir. domain/data subdirectory. For
example, /master1_bakup/org_dir.doc.com./data/hosts.org_dir

276 Solaris Naming Administration Guide ♦ May 1999

User-created NIS+ tables present in a given directory object are backed up in the
same way as the standard NIS+ tables.

� groups_dir . An XDR encoded file containing NIS+ groups information. This file
is stored in the corresponding NIS+ groups_dir target directory.

Restoring Your NIS+ Namespace With
nisrestore
The nisrestore command recreates NIS+ directory objects to match the data stored
in backup files created with the nisbackup command. This command can be used
to restore NIS+ servers, replace directory objects that have become corrupted, or
down load NIS+ data on to a new NIS+ server.

Prerequisites to Running nisrestore
In order to use nisrestore the target machine that will be receiving the NIS+ data
from nisrestore must have already been set up as an NIS+ server. (See Solaris
Naming Setup and Configuration Guide for a detailed description of setting up NIS+
servers.) This means that:

� The machine must have already been initialized as an NIS+ client.

� If the machine will be running in NIS-compatibility mode and support DNS
forwarding, it must have a properly configured /etc/resolv.conf file.

� If you are using nisrestore on a server while other servers in the namespace
are up and running, nisrestore will verify with those other servers that this
server is configured to serve the backed up NIS+ objects that you are restoring to
it. If no other servers are up and running in your namespace, then you must run
nisrestore with the −f option. In other words, if there are other servers that
nisrestore can check with, you do not need to use the −f option. If no other
servers are available, for example if you are restoring a single master server and
there are no functioning replica servers, then you must use the −f option.

Caution - In addition to the three pre-requisites listed above, the rpc.nisd daemon
must not be running on the machine. If necessary, you must kill rpc.nisd before
running nisrestore .

NIS+ Backup and Restore 277

nisrestore Syntax
The nisrestore command uses the following syntax:

nisrestore [-fv][-a][-t] backupdir [directory_objects]

Where:

� Backupdir is the directory containing the backup files to be used to restore the NIS+
objects. For example, /var/master1_bakup .

� Directory_objects are the NIS+ directory objects that you want to restore. For
example, org_dir.doc.com . Multiple NIS+ directory objects can be listed
separated by spaces. (If you run nisrestore with the −a option, you do not
specify specific directory objects.)

The nisrestore command takes the following options:

TABLE 16–2 Options for the nisbackup Command

Option Purpose

−a
All. Restores all of the NIS+ directory objects contained in the backup
directory.

−f
Forces the restoration without validating that the server is listed in the
directory object’s serving list. This option must be used when restoring a root
master server or if you get an “unable to lookup object” type of error.

−v
Verbose mode. This mode provides additional information

−t
This option lists all of the NIS+ directory objects stored in the backup
directory. No restoration of objects takes place.

Using nisrestore
To restore NIS+ data from NIS+ backup files, use the nisrestore command.

For example, to restore the org_dir.doc.com. directory object on the replica1
server, you would log in as root on replica1 , make sure that the prerequisites
described in “Prerequisites to Running nisrestore ” on page 277 have been met
and then run nisrestore as shown below:

replica1# nisrestore /var/master1_bakup org_dir.doc.com.

The following points apply to nisrestore :

278 Solaris Naming Administration Guide ♦ May 1999

� Damaged namespace. To restore a damaged or corrupted NIS+ namespace, the
nisrestore command must be run on all of the servers for the NIS+ directory
objects you are restoring.

� Lookup error. If you get an error message telling you that nisrestore cannot
verify or look up needed data, then you must use the −f option.

For example, to reload NIS+ data on a root master server named master1 , you
would enter:

master1# nisrestore -f -a /var/master1_bakup

� Directory names. When specifying the NIS+ directory objects to be restored, you
can use full or partially qualified directory names.

Using Backup/Restore to Set Up
Replicas
The NIS+ backup and restore features can be used to quickly down load NIS+ data
on to a new replica server. For large namespaces this is much faster than nisping to
obtain data from the master server.

Using nisbackup and nisrestore to set up a new replica is described in detail in
Solaris Naming Setup and Configuration Guide. Briefly, the steps are:

1. Run nisserver on the master to create the new replica.

2. Kill rpc.nisd on the new replica server.

This interrupts the automatic transfer for namespace data from the master to the
replica using the nisping command.

3. Run nisbackup on the master server.

4. Run nisrestore on the new replica to down load the NIS+ data.

5. Restart rpc.nisd on the new replica

NIS+ Backup and Restore 279

Replacing Server Machines
You can use nisbackup and nisrestore to quickly replace a machine that you are
using as a server with another machine. For example, you want to improve network
performance by replacing an older server with a newer, faster machine.

Machine Replacement Requirements
To replace a machine being used as an NIS+ server with another machine, you must:

� Assign the new machine the same IP address as the older machine it is replacing.

� Assign the new machine the same machine name as the older machine it is
replacing.

� Connect the new machine to the same subnet as the older machine it is replacing.

How to Replace Server Machines
To replace a server machine, follow these steps:

1. Run nisbackup on the master server for the domain that the old server serves.

See “Backing Up an Entire NIS+ Namespace ” on page 275. (Note that the old
server you are replacing could be the master server for the domain, in which case
you would run nisbackup on this old master server.)

2. Copy the old server’s /var/nis/NIS_COLD_START file to the backup directory.

3. Copy the old server’s /etc/.rootkey file to the backup directory.

4. Disconnect the old server from the network.

5. Connect the new server to the network.

6. Assign the new server the same IP address (number) as the old server.

7. Assign the new server the same machine name as the old server.

8. If necessary, kill rpc.nisd on the new server.

9. Run nisrestore on the new server to down load the NIS+ data.

See “Restoring Your NIS+ Namespace With nisrestore ” on page 277.

280 Solaris Naming Administration Guide ♦ May 1999

10. Copy the .rootkey file from the backup directory to /etc on the new server.

11. Copy the NIS_COLD_STARTfile from the backup directory to /var/nis on the
new server.

12. Reboot the new server.

NIS+ Backup and Restore 281

282 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 17

Removing NIS+

This chapter describes how to use the NIS+ directory administration commands to
remove NIS+ from clients, servers, and the namespace as a whole.

� “Removing NIS+ From a Client Machine” on page 283

� “Removing NIS+ From a Server” on page 284

� “Removing the NIS+ Namespace” on page 286

For information on disassociating an NIS+ replica server from a directory so that it
no longer acts as a replica for that domain, see “The nisrmdir Command ” on page
202.

Removing NIS+ From a Client Machine
This section described how to remove NIS+ from a client machine. Keep in mind that
removing NIS+ from a client machine does not remove the NIS+ name service from
your network. See “Removing the NIS+ Namespace” on page 286 for information on
removing the NIS+ name service from a network and returning to either NIS or
/etc files for name purposes.

Removing NIS+ That Was Installed Using
nisclient
To remove NIS+ from a client machine that was set up as an NIS+ client using the
nisclient −i script as described in Solaris Naming Setup and Configuration Guide,
simply run nisclient with the −r option:

283

client# nisclient -r

nisclient −r simply undoes the most recent iteration of nisclient −i ; it restores
the previous naming system used by the client, such as NIS or /etc files.

Removing NIS+ That Was Installed Using NIS+
Commands
To remove NIS+ from a client machine that was set up as an NIS+ client using the
nisaddcred , domainname , and nisinit commands as described in Solaris
Naming Setup and Configuration Guide, perform the following steps:

1. Remove the .rootkey file.

client# rm -f /etc/.rootkey

2. Locate and kill the keyserv , nis_cachemgr , and nscd processes.

client# ps -ef | grep keyserv
root 714 1 67 16:34:44 ? keyserv

client# kill -9 714
client# ps -ef | grep nis_cachemgr

root 123 1 67 16:34:44 ? nis_cachemgr
client# kill -9 123
client# ps -ef | grep nscd

root 707 1 67 16:34:44 ? nscd
client# kill -9 707

3. Remove the /var/nis directory and files.

clientmachine# rm -rf /var/nis/*

Removing NIS+ From a Server
This section describes how to remove NIS+ from an NIS+ server.

Keep in mind that removing NIS+ from a server does not remove the NIS+ name
service from your network. See “Removing the NIS+ Namespace” on page 286 for

284 Solaris Naming Administration Guide ♦ May 1999

information on removing the NIS+ name service from a network and returning to
either NIS or /etc files for naming purposes.

Note - You can replace a machine that you are using as an NIS+ server with another
machine. See “Replacing Server Machines ” on page 280.

To remove NIS+ from a server, follow these steps:

1. Perform the steps necessary to remove NIS+ from a client.

An NIS+ server is also an NIS+ client. This means that you must first remove the
client-related part of NIS+. You can use nisclient −r as described in
“Removing NIS+ That Was Installed Using nisclient ” on page 283 or the NIS+
command set as described in “Removing NIS+ That Was Installed Using NIS+
Commands” on page 284.

2. Remove the server’s groups_dir and org_dir directories.

server# nisrmdir -f groups_dir. domainname
server# nisrmdir -f org_dir. domainname

3. Locate and kill the keyserv , rpc.nisd , nis_cachemgr , and nscd processes
on the server.

server# ps -ef | grep rpc.nisd
root 137 1 67 16:34:44 ? rpc.nisd

server# kill -9 137
server# ps -ef | grep keyserv

root 714 1 67 16:34:44 ? keyserv
server# kill -9 714
server# ps -ef | grep nis_cachemgr

root 123 1 67 16:34:44 ? nis_cachemgr
server# kill -9 123
server# ps -ef | grep nscd

root 707 1 67 16:34:44 ? nscd
server# kill -9 707

4. Remove the /var/nis directory and files.

rootmaster# rm -rf /var/nis/*

Removing NIS+ 285

Removing the NIS+ Namespace
To remove the NIS+ namespace and return to using either NIS or /etc files for
name services, follow these steps:

1. Remove the .rootkey file from the root master.

rootmaster# rm -f /etc/.rootkey

2. Remove the groups_dir and org_dir subdirectories from the root master
root domain.

rootmaster# nisrmdir -f groups_dir. domainname
rootmaster# nisrmdir -f org_dir. domainname

Where domainname is the name of the root domain, for example, doc.com .

3. Remove the root domain.

rootmaster# nisrmdir -f domainname

Where domainname is the name of the root domain, for example, doc.com .

4. Locate and kill the keyserv , rpc.nisd , nis_cachemgr , and nscd processes.

rootmaster# ps -ef | grep rpc.nisd
root 137 1 67 16:34:44 ? rpc.nisd

rootmaster# kill -9 137
rootmaster# ps -ef | grep keyserv

root 714 1 67 16:34:44 ? keyserv
rootmaster# kill -9 714
rootmaster# ps -ef | grep nis_cachemgr

root 123 1 67 16:34:44 ? nis_cachemgr
rootmaster# kill -9 123
rootmaster# ps -ef | grep nscd

root 707 1 67 16:34:44 ? nscd
rootmaster# kill -9 707

5. Create a new domain.

286 Solaris Naming Administration Guide ♦ May 1999

rootmaster# domainname name

Where name is the name of the new domain; for example, the name of the domain
before you installed NIS+.

6. Remove the existing /etc/defaultdomain file.

rootmaster# rm /etc/ defaultdomain

7. Recreate the /etc/defaultdomain file with the new domain name.

rootmaster# domainname > /etc/defaultdomain

8. Replace the original nsswitch.conf file.

If you set up this server with nisserver −r , you can use:

rootmaster# cp /etc/nsswitch.conf.no_nisplus /etc/nsswitch.conf

Alternatively, you can copy over one of the default switch template files. To use
the default NIS switch file template, you would type:

rootmaster# cp /etc/nsswitch.nis etc/nsswitch.conf

To use the default /etc files switch file template, you would type:

rootmaster# cp /etc/nsswitch.files etc/nsswitch.conf

9. Restart the keyserv process.

rootmaster# keyserv

10. Remove the /var/nis directory and files.

rootmaster# rm -rf /var/nis/*

11. Now restart your other name service (NIS or /etc files).

Removing NIS+ 287

288 Solaris Naming Administration Guide ♦ May 1999

PART IV Administering NIS

This part describes the Network Information Service (NIS) and how to administer it.

� Chapter 18

� Chapter 19

CHAPTER 18

Network Information Service (NIS)

This chapter describes NIS, the Network Information Service.

� “NIS Introduction” on page 291

� “NIS Machine Types ” on page 294

� “NIS Elements” on page 295

� “NIS Binding” on page 302

� “Differences Between This and Earlier NIS Versions ” on page 304

See Solaris Naming Setup and Configuration Guide for information on how to
initially setup and configure NIS.

NIS Introduction
NIS is a distributed name service. It is a mechanism for identifying and locating
network objects and resources. It provides a uniform storage and retrieval method for
network-wide information in a transport-protocol and media-independent fashion.

By running the service, the system administrator can distribute administrative
databases, called maps, among a variety of servers (master and slaves), and update
those databases from a centralized location in an automatic and reliable fashion to
ensure that all clients share the same name service information in a consistent
manner throughout the network. For additional overview and background
information on NIS, see “NIS” on page 9.

NIS was developed independently of DNS and has a slightly different focus.
Whereas DNS focuses on making communication simpler by using machine names

291

instead of numerical IP addresses, NIS focuses on making network administration
more manageable by providing centralized control over a variety of network
information. NIS stores information not only about machine names and addresses,
but also about users, the network itself, and network services. This collection of
network information is referred to as the NIS namespace.

Note - In some contexts machine names are referred to has host names or workstation
names. This discussion uses machine, but some screen messages or NIS map names
may use host or workstation.

NIS Architecture
NIS uses a client-server arrangement. NIS servers provide services to NIS clients. The
principal servers are called master servers, and for reliability, they have backup, or
slave servers. Both master and slave servers use the NIS information retrieval
software and both store NIS maps.

NIS uses domains to arrange the machines, users, and networks in its namespace.
However, it does not use a domain hierarchy; an NIS namespace is flat. Thus, this
physical network:

192.44.1.0

192.44.0.0

192.44.2.0

would be arranged into one NIS domain:

192.44.0.0

The doc Domain

192.44.1.0 192.44.2.0

A NIS domain cannot be connected directly to the Internet using just NIS. However,
organizations that want to use NIS and also be connected to the Internet can
combine NIS with DNS. You can use NIS to manage all local information and use

292 Solaris Naming Administration Guide ♦ May 1999

DNS for Internet host lookup. NIS provides a forwarding service that forwards host
lookups to DNS if the information cannot be found in a NIS map. The Solaris
operating environment also allows you to set up the nsswitch.conf file so that
hosts lookup requests go only to DNS, or to DNS and then NIS if not found by DNS,
or to NIS and then DNS if not found by NIS. (See Chapter 2, for details.)

NIS and NIS+
Both NIS and NIS+ perform some of the same tasks. NIS+, however, allows for
hierarchical domains, namespace security, and other features that NIS does not
provide. For a more detailed comparison between NIS and NIS+, see “How NIS+
Differs From NIS” on page 29.

You can use NIS in conjunction with NIS+ under the following principles and
conditions:

� Servers within a domain. While you can have both NIS and NIS+ servers
operating in the same domain, doing so is not recommended for long periods. As
a general rule, using both services in the same domain should be limited to a
relatively short transition period from NIS to NIS+. If some clients need NIS
service, you can run NIS+ in NIS compatibility mode as explained “Solaris 1.x
Releases and NIS-Compatibility Mode” on page 33.

� Subdomains. If the master server of your root domain is running NIS+, you can
set up subdomains whose servers are all running NIS. (If your root domain master
server is running NIS, you cannot have subdomains.) This might be useful in
situations where you are moving from NIS to NIS+. For example, suppose your
enterprise had separate, multiple NIS domains, possibly at different sites. Now
you need to link them all together into a single, hierarchical multi-domain
namespace under NIS+. By first setting up the root domain under NIS+, you can
then designate the legacy NIS domains as sub-domains that continue to run NIS
until it is convenient to switch them over to NIS+.

� Machines within a domain.

� If a domain’s servers are running NIS+, individual machines within that
domain can be set up to use either NIS+, NIS, or /etc files for their name
service information. In order for an NIS+ server to supply the needs of an NIS
client, the NIS+ server must be running in NIS-Compatibility mode as
described in Solaris Naming Setup and Configuration Guide.

� If a domain’s servers are running NIS, individual machines within that domain
can be set up to use either NIS or /etc files for name services (they cannot use
NIS+).

Which service a machine uses for various name services is controlled by the
machine’s nsswitch.conf file. This file is called the switch file. See Chapter 2 for
further information.

Network Information Service (NIS) 293

NIS and FNS
Under certain conditions, FNS commands can be used by NIS clients to update
naming information that pertains to them such as file systems and printers. (See “NIS
Clients Can Update Contexts With FNS if SKI is Running” on page 378 for details.)

NIS Machine Types
There are three types of NIS machines:

� Master server

� Slave servers

� Clients of NIS servers

Any machine can be an NIS client, but only machines with disks should be NIS
servers, either master or slave. Servers are also clients, typically of themselves.

NIS Servers
By definition, an NIS server is a machine storing a set of maps that are available to
network machines and applications. The NIS server does not have to be the same
machine as the NFS file server.

NIS servers come in two varieties, master and slave. The machine designated as
master server contains the set of maps that you, the NIS administrator, create and
update as necessary. Each NIS domain must have one, and only one, master server.
This should be a machine that can propagate NIS updates with the least performance
degradation.

You can designate additional NIS servers in the domain as slave servers. A slave
server has a complete copy of the master set of NIS maps. Whenever the master
server maps are updated, the updates are propagated among the slave servers. The
existence of slave servers allows the system administrator to evenly distribute the
load resulting from answering NIS requests. It also minimizes the impact of a server
becoming unavailable.

Normal practice is to designate one master server for all NIS maps. However,
because each individual NIS map has the machine name of the master server
encoded within it, you could designate different servers to act as master and slave
servers for different maps. Note, however, that randomly designating a server as
master of one map and another server as master of another map can cause a great
deal of administrative confusion. For that reason it is best to have a single server be
the master for all the maps you create within a single domain. The examples in this
chapter assume that one server is the master for all maps in the domain.

294 Solaris Naming Administration Guide ♦ May 1999

NIS Clients
NIS clients run processes that request data from maps on the servers. Clients do not
make a distinction between master and slave servers, since all NIS servers should
have the same information.

NIS servers are also clients, typically though not necessarily, of themselves. For
information on how to create NIS clients, refer to the ypbind man page.

NIS Elements
The NIS service is composed of the following elements:

� Domains (see “The NIS Domain ” on page 295)

� Maps (see “NIS Maps” on page 297)

� Daemons (see “NIS Daemons ” on page 295)

� Utilities (see “NIS Utilities” on page 296)

� NIS Command Set (see “Summary of NIS-Related Commands” on page 301)

The NIS Domain
An NIS domain is a collection of machines that share a common set of NIS maps.
Each domain has a domain name and each machine sharing the common set of maps
belongs to that domain. Domain names are case-sensitive.

Any machine can belong to a given domain, as long as there is a server for that
domain’s maps in the same network. Solaris Release 2 machines do not require the
server to be on the same subnet, but earlier implementations of NIS historically have
required that a server exist on every subnet using NIS. A NIS client machine obtains
its domain name and binds to a NIS server as part of its boot process.

NIS Daemons
NIS service is provided by five daemons as shown in Table 18–1.

Network Information Service (NIS) 295

TABLE 18–1 NIS Daemons

Daemon Function

ypserv Server process

ypbind Binding process

ypxfr High speed map transfer

rpc.yppasswdd NIS password update daemon

rpc.ypupdated Modifies other maps such as publickey

NIS Utilities
NIS service is supported by nine utilities as shown in Table 18–2.

TABLE 18–2 NIS Utilities

Utility Function

makedbm Creates dbm file for an NIS map

ypcat Lists data in a map

ypinit Builds and installs an NIS database and initializes NIS client’s
ypservers list.

yppmatch Finds a specific entry in a map

yppoll Gets a map order number from a server

yppush Propagates data from NIS master to NIS slave server

ypset Sets binding to a particular server

296 Solaris Naming Administration Guide ♦ May 1999

TABLE 18–2 NIS Utilities (continued)

Utility Function

ypwhich Lists name of the NIS server and nickname translation table

ypxfr Transfers data from master to slave NIS server

NIS Maps
NIS stores information in a set of files called maps.

NIS maps were designed to replace UNIX /etc files, as well as other configuration
files, so they store much more than names and addresses. On a network running
NIS, the NIS master server for each NIS domain maintains a set of NIS maps for
other machines in the domain to query. NIS slave servers also maintain duplicates of
the master server’s maps. NIS client machines can obtain name space information
from either master or slave servers.

NIS maps are one type of implementation of Solaris databases. (Other types, not
necessarily overlapping, are the files generally found in the /etc directory, the DNS
resource records (RRs), and NIS+ tables.)

NIS Maps Overview
NIS maps are essentially two-column tables. One column is the key and the other
column is information value related to the key. NIS finds information for a client by
searching through the keys. Some information is stored in several maps because each
map uses a different key. For example, the names and addresses of machines are
stored in two maps: hosts.byname and hosts.byaddr . When a server has a
machine’s name and needs to find its address, it looks in the hosts.byname map.
When it has the address and needs to find the name, it looks in the hosts.byaddr
map.

Maps for a domain are located in each server’s /var/yp/ domainname directory. For
example, the maps that belong to the domain test.com are located in each server’s
/var/yp/test.com directory.

An NIS Makefile is stored in the /var/yp directory of machines designated as a
NIS server at installation time. Running make in that directory causes makedbm to
create or modify the default NIS maps from the input files. (See Solaris Naming
Setup and Configuration Guide for a description of using this process to initially set
up your NIS name space.)

Network Information Service (NIS) 297

Note - Never make the maps on a slave server. Always run make on the master
server.

The information in NIS maps is stored in ndbm format. The ypfiles and ndbm man
pages explain the format of the map file.

Default NIS Maps
A default set of NIS maps are provided for you. You may want to use all these maps
or only some of them. NIS can also use whatever maps you create or add when you
install other software products.

Table 18–3 describes the default NIS maps, information they contain, and whether
the software consults the corresponding administrative files when NIS is running.

TABLE 18–3 NIS Map Descriptions

Map Name
Corresponding
NIS Admin File Description

bootparams bootparams Contains path names of files clients
need during boot: root, swap, possibly
others.

ethers.byaddr ethers Contains machine names and Ethernet
addresses. The Ethernet address is the
key in the map.

ethers.byname ethers Same as ethers.byaddr , except the
key is machine name instead of the
Ethernet address.

group.bygid group Contains group security information
with group ID as key.

group.byname group Contains group security information
with group name as key.

hosts.byaddr hosts Contains machine name, and IP
address, with IP address as key.

hosts.byname hosts Contains machine name and IP address,
with machine (host) name as key.

mail.aliases aliases Contains aliases and mail addresses,
with aliases as key.

298 Solaris Naming Administration Guide ♦ May 1999

TABLE 18–3 NIS Map Descriptions (continued)

Map Name
Corresponding
NIS Admin File Description

mail.byaddr aliases Contains mail address and alias, with
mail address as key.

netgroup.byhost netgroup Contains group name, user name and
machine name.

netgroup.byuser netgroup Same as netgroup.byhost , except
that key is user name.

netgroup netgroup Same as netgroup.byhost , except
that key is group name.

netid.byname passwd, hosts

group

Used for UNIX-style authentication.
Contains machine name and mail
address (including domain name). If
there is a netid file available it is
consulted in addition to the data
available through the other files.

netmasks.byaddr netmasks Contains network mask to be used with
IP submitting, with the address as the
key.

networks.byaddr networks Contains names of networks known to
your system and their IP addresses,
with the address as the key.

networks.byname networks Same as networks.byaddr , except
key is name of network.

passwd.adjunct.
byname

passwd and
shadow

Contains auditing information and the
hidden password information for C2
clients.

passwd.byname passwd and
shadow

Contains password information with
user name as key.

passwd.byuid passwd and
shadow

Same as passwd.byname , except that
key is user ID.

protocols.byname protocols Contains network protocols known to
your network.

protocols.bynumber protocols Same as protocols.byname , except
that key is protocol number.

Network Information Service (NIS) 299

TABLE 18–3 NIS Map Descriptions (continued)

Map Name
Corresponding
NIS Admin File Description

rpc.bynumber rpc Contains program number and name of
RPCs known to your system. Key is
RPC program number.

services.byname services Lists Internet services known to your
network. Key is port or protocol.

services.byservice services Lists Internet services known to your
network. Key is service name.

ypservers N/A Lists NIS servers known to your
network.

Using NIS Maps
NIS makes updating network databases much simpler than with the /etc files
system. You no longer have to change the administrative /etc files on every
machine each time you modify the network environment.

For example, when you add a new machine to a network running NIS, you only
have to update the input file in the master server and run make. This automatically
updates the hosts.byname and hosts.byaddr maps. These maps are then
transferred to any slave servers and are made available to all of the domain’s client
machines and their programs. When a client machine or application requests a
machine name or address, the NIS server refers to the hosts.byname or
hosts.byaddr map as appropriate and sends the requested information to the
client.

You can use the ypcat command to display the values in a map. The ypcat basic
format is:

% ypcat mapname

Where mapname is the name of the map you want to examine or its nickname. If a map
is composed only of keys, as in the case of ypservers , use ypcat −k ; otherwise,
ypcat prints blank lines. The ypcat man page describes more options for ypcat .

You can use the ypwhich command to determine which server is the master of a
particular map. Type the following:

% ypwhich -m mapname

300 Solaris Naming Administration Guide ♦ May 1999

Where mapname is the name or the nickname of the map whose master you want to
find. ypwhich responds by displaying the name of the master server. For complete
information, refer to the ypwhich man page.

NIS Map Nicknames
Nicknames are aliases for full map names. To obtain a list of available map
nicknames, such as passwd for passwd.byname , type ypcat −x or ypwhich −x .

Nicknames are stored in the /var/yp/nicknames file, which contains a map
nickname followed by the fully specified name for the map, separated by a space.
This list may be added to or modified. Currently, there is a limit of 500 nicknames.

Summary of NIS-Related Commands
The NIS service includes specialized daemons, system programs, and commands,
which are summarized in Table 18–4. Refer to their man pages for details about how
to use them.

TABLE 18–4 NIS Command Summary

Command Description

ypserv Services NIS clients’ requests for information from a NIS map. ypserv
is a daemon that runs on NIS servers with a complete set of maps. At
least one ypserv daemon must be present on the network for NIS
service to function.

ypbind Provides NIS server binding information to clients. It provides binding
by finding a ypserv process that serves maps within the domain of
the requesting client. ypbind must run on all servers and clients.

ypinit Automatically creates maps for an NIS server from the input files. It is
also used to construct the initial /var/yp/binding/ domain/
ypservers file on the clients. Use ypinit to set up the master NIS
server and the slave NIS servers for the first time.

make Updates NIS maps by reading the Makefile (when run in the /var/
yp directory). You can use make to update all maps based on the input
files or to update individual maps. The ypmake(1M) man page
describes the functionality of make for NIS.

makedbm makedbm takes an input file and converts it into dbm.dir and
dbm.pag files—valid dbm files that NIS can use as maps. You can also
use makedbm −u to disassemble a map, so that you can see the
key-value pairs that comprise it.

Network Information Service (NIS) 301

TABLE 18–4 NIS Command Summary (continued)

Command Description

ypxfr Pulls an NIS map from a remote server to the local /var/yp/ domain
directory, using NIS itself as the transport medium. You can run ypxfr
interactively, or periodically from a crontab file. It is also called by
ypserv to initiate a transfer.

ypxfrd Provides map transfers service for ypxfr requests (generally slave
servers). It is run only on the master server.

yppush Copies a new version of an NIS map from the NIS master server to its
slaves. You run it on the master NIS server.

ypset Tells a ypbind process to bind to a named NIS server. This is not for
casual use and its use is discouraged because of security implications.
See the ypset(1M) and ypbind(1M) man pages for information about
the ypset and ypsetme options to the ypbind process.

yppoll Tells which version of an NIS map is running on a server that you
specify. It also lists the master server for the map.

ypcat Displays the contents of an NIS map.

ypmatch Prints the value for one or more specified keys in an NIS map. You
cannot specify which version of the NIS server map you are seeing.

ypwhich Shows which NIS server a client is using at the moment for NIS
services, or, if invoked with the −mmapname option, which NIS server
is master of each of the maps. If only −m is used, it displays the names
of all the maps available and their respective master servers.

NIS Binding
NIS clients get information from a NIS server through the binding process, which
can work in one of two modes: server-list or broadcast.

� Server-list. In the server-list mode, the ypbind process queries the
/var/yp/binding/ domain/ypservers list for the names of all of the NIS
servers in the domain. The ypbind process binds only to servers in this file. The
file is created by running ypinit −c .

� Broadcast. The ypbind process can also use an RPC broadcast to initiate a
binding. Since broadcasts are only local subnet events that are not routed further,

302 Solaris Naming Administration Guide ♦ May 1999

there must be at least one server (master or slave) on the same subnet as the client.
The servers themselves may exist throughout different subnets since map
propagation works across subnet boundaries. In a subnet environment, one
common method is to make the subnet router an NIS server. This allows the
domain server to serve clients on either subnet interface.

Server-List Mode
The binding process in server-list mode works as follows:

1. Any program, running on the NIS client machine that needs information provided
by an NIS map, asks ypbind for the name of a server.

2. ypbind looks in the /var/yp/binding/ domainname/ypservers file for a list
of NIS servers for the domain.

3. ypbind initiates binding to the first server in the list. If the server does not
respond, ypbind tries the second, and so on, until it finds a server or exhausts
the list.

4. ypbind tells the client process which server to talk to. The client then sends the
request directly to the server.

5. The ypserv daemon on the NIS server handles the request by consulting the
appropriate map.

6. ypserv sends the requested information back to the client.

Broadcast Mode
The broadcast mode binding process works as follows:

1. ypbind must be started with the broadcast option set (broadcast).

2. ypbind issues an RPC broadcast in search of an NIS server.

Note - In order to support such clients, it is necessary to have an NIS server on each
subnet requiring NIS service.

1. ypbind initiates binding to the first server that responds to the broadcast.

2. ypbind tells the client process which server to talk to. The client then sends the
request directly to the server.

3. The ypserv daemon on the NIS server handles the request by consulting the
appropriate map.

4. ypserv sends the requested information back to the client.

Normally, once a client is bound to a server it stays bound to that server until
something causes it to change. For example, if a server goes out of service, the clients
it served will then bind to new servers.

Network Information Service (NIS) 303

To find out which NIS server is currently providing service to a specific client, use
the following command:

% ypwhich machinename

Where machinename is the name of the client. If no machine name is mentioned,
ypwhich defaults to the local machine (that is, the machine on which the command
is run).

Differences Between This and Earlier
NIS Versions
The following features are new or different in Solaris Release 2.6 NIS.

NSKit Discontinued
The most recent Solaris releases have not included NIS service. Up to now, NIS
service had to be installed from the unbundled NSKit. NIS has now been included in
the Solaris Release 2.6 and there is no 2.6 Release NSKit.

Because NIS service is now part of the Solaris 2.6 Release, the SUNWnsktu and
SUNWnsktr packages no longer exist. Instead, NIS is now installed via the NIS
Server cluster (containing the SUNWypuand SUNWyprpackages).

NIS service is no longer started with the /etc/init.d/yp script which no longer
exists. With the Solaris 2.6 Release, you first configure your master server NIS maps
with the ypinit script, and then start NIS with ypstart . NIS service is stopped
with the ypstop command.

The ypupdated Daemon
The most recent versions of NSKit did not include the ypupdated daemon. The
ypupdated daemon is now included in this Solaris release.

/var/yp/securenets
As with the previous NSKit release, the /var/yp/securenets file is now used to
limit access to NIS services. If such a file exists on an NIS server, the server only

304 Solaris Naming Administration Guide ♦ May 1999

answers queries or supplies maps to machines and networks whose IP addresses are
listed in the file. For the file format, see the securenets man page.

The following is an example of a securenets file.

255.255.255.0 13.13.13.255
host 13.13.14.1
host 13.13.14.2

where 255.255.255.0 is the netmask and 13.13.13.255 is the network address. For the
set up in line 1, ypserv responds to only those addresses in the subnet 13.13.13.255
range.

If you modify entries in the /var/yp/securenets file, you must kill and restart
the ypserv and ypxfrd daemons.

Multihomed Machine Support
As with the previous NSKit release, the ypserv process provides support for
machines which have more than one network address. When the machine maps are
created, the Makefile creates a YP_MULTI_HOSTNAMEentry in the map for any
machine that has more than one address. This entry lists all the addresses for that
machine. When the machine address is needed, an attempt is made to use the closest
address on the list. See the ypserv man page for more details.

The determination of closest address is an arithmetic one and as such there is no
check for address validity. For example, suppose that a multihomed machine has six
IP addresses and only five of the interfaces on the machine are operating normally.
Machines on a network that is not directly connected to this multihomed machine
can receive the IP address for the down interface from ypserv . Thus, this
hypothetical client can not reach the multihomed machine.

Note - All addresses for a multihomed machine should normally be active. If a
particular address or machine is going to be out of service, remove it from the NIS
maps.

Sun Operating Environment 4.X Compatibility
Mode
Solaris 2.6 release NIS supports password configuration files in both the Sun
Operating Environment 4.x (Solaris release 1) password format and the Solaris
Release 2 password and shadow file formats.

Network Information Service (NIS) 305

The mode of operation is determined by the existence of the file $PWDIR/shadow ,
where $PWDIRis the Makefile macro set in the /var/yp/Makefile file. If the
shadow file exists, NIS operates in the Solaris Release 2 mode. If this file does not
exist, NIS operates in the SunOS 4.x mode.

In the SunOS 4.x mode, all password information is kept in the passwd file. In the
Solaris Release 2 mode, password information is kept in the shadow file and the user
account information is kept in the passwd file.

If the make macro PWDIRis set to the /etc directory, NIS can operate only in the
Solaris Release 2 mode because of the Solaris Release 2 passwd processing
requirements. However, if PWDIRpoints to any directory other than /etc , the user
has the option of keeping passwd configuration files in either the SunOS 4.x format
or in the Solaris Release 2 format. The rpc.yppasswdd daemon understands both
password formats. The Solaris Release 2 format is recommended.

Using the Name Service Switch
The name service switch is designed to simplify name service administration. Client
machines and applications use this switch to select a name service. The switch
mechanism is implemented using the /etc/nsswitch.conf file, which specifies
the source(s) used to resolve references for each information type.

This section discusses only those elements that are needed to properly configure the
name service switch for NIS operation. For a more detailed description of the
nsswitch.conf file, see Chapter 2.

An nsswitch.conf file is automatically loaded into every machine’s /etc directory
by the Solaris 2.6 release software, along with three alternate (template) versions:

� /etc/nsswitch.nisplus

� /etc/nsswitch.nis

� /etc/nsswitch.files

These alternate template files contain the default switch configurations used by the
NIS+ service, NIS, and local files. (See “The nsswitch.conf Template Files” on
page 17.) No default file is provided for DNS, but you can edit any of these files to
use DNS (see“DNS Forwarding for NIS Clients” on page 20).

Note that this switch functionality does not exist under SunOS 4.x. Thus, DNS
forwarding for 4.x clients must be done on the NIS server. In this situation, if a 4.x
client requests information for a host that is not listed in the NIS server’s NIS map,
the NIS server forwards the client’s host request to a DNS server on the client’s
behalf.

When Solaris 2.6 release software is first installed on a machine, the installer selects
the machine’s default name service: NIS+, NIS, or local files. During installation, the
corresponding template file is copied to /etc/nsswitch.conf . For a machine
client using NIS, the installation process copies nsswitch.nis to nsswitch.conf .

306 Solaris Naming Administration Guide ♦ May 1999

Unless you have an unusual NIS database setup, the default /etc/nsswitch.nis
template file as copied to nsswitch.conf should be sufficient for NIS operation.

When changing a machine client from naming system (/etc , NIS or NIS+) to
another, you copy the corresponding template file to nsswitch.conf . You can also
change the sources of particular types of network information used by the client by
editing the appropriate lines of the /etc/nsswitch.conf file. See Solaris Naming
Setup and Configuration Guide, and Chapter 2.

Caution - If the /etc/nsswitch.conf file is set to files and not nis for host
information, and the server is not included in the /etc/hosts file, then the ypcat
command generates the following error
message: RPC failure: ‘‘RPC failure on yp operation’’

Network Information Service (NIS) 307

308 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 19

Administering NIS

This chapter describes how to administer NIS.

� “Password Files and Namespace Security ” on page 310

� “Administering NIS Users ” on page 310

� “Netgroups ” on page 313

� “Working With NIS Maps” on page 314

� “Obtaining Map Information” on page 314

� “Changing a Map’s Master Server” on page 315

� “Modifying Configuration Files” on page 317

� “Modifying and Using the Makefile ” on page 317

� “Updating Existing Maps ” on page 320

� “Adding a New Slave Server ” on page 326

� “Using NIS with C2 Security ” on page 328

� “Changing a Machine’s NIS Domain ” on page 328

� “Using NIS in Conjunction With DNS ” on page 328

� “Turning Off NIS Services” on page 330

� “NIS Problem Solving and Error Messages” on page 331

See Chapter 18, for a general description of NIS.

See Solaris Naming Setup and Configuration Guide for information on how to
initially set up and configure NIS.

309

Password Files and Namespace Security
For security reasons:

� It is best to limit access to the NIS maps on the master server.

� The files used to build the NIS password maps should not contain an entry for
root to protect against unauthorized access. To accomplish this, the password
files used to build the password maps should have the root entry removed from
them and be located in a directory other than the master server’s /etc directory.
This directory should be secured against unauthorized access.

For example, the master server password input files could be stored in a directory
such as /var/yp , or any directory of your choice, as long as the file itself is not a
link to another file and is specified in the Makefile. The
/usr/lib/netsvc/yp/ypstart script automatically sets the correct directory
option according to the configuration specified in your Makefile .

Note - In addition to the older Solaris 1.x version passwd file format, this
implementation of NIS accepts the Solaris Release 2 passwd and shadow file formats
as input for building the NIS password maps.

Administering NIS Users
This section includes information about setting user passwords, adding new users to
an NIS domain, and assigning users to netgroups.

Adding a New User to an NIS Domain
To add a new NIS user:

1. Log in as root on the master NIS server.

2. Create the new user’s login ID with the useradd command.

For Solaris Release 2 systems, type the following:

useradd userID

Where userID is the login ID of the new user. This command creates entries in the
/etc/passwd and /etc/shadow files on the master NIS server.

310 Solaris Naming Administration Guide ♦ May 1999

3. Create the new user’s initial password.

To create an initial password that the new user can use to log in, run the passwd
command in the form:

passwd userID

Where userID is the login ID of the new user. You will be prompted for the
password to assign to this user.

This step is necessary because the password entry created by the useradd
command is locked, which means that the new user cannot log in. By specifying
an initial password, you unlock the entry.

4. If necessary, copy the new entry into the server’s passwd map input files.

If the map source files on your master server are in a directory other than /etc
(as they should be), you have to copy and paste the new lines from the
/etc/passwd and /etc/shadow files into the passwd map input files on the
server. (See “Password Files and Namespace Security ” on page 310 for additional
information on this matter.)

For example, if you added the new user baruch , the line from /etc/passwd
that you would copy to your passwd input file would look like:

baruch:x:123:10:User baruch:/home/baruch:/bin/csh:

The line for baruch that you would copy from /etc/shadow would look like:

baruch:W12345GkHic:6445::::::

Note - If you are using a Solaris Release 1 passwd file format as input for your
NIS maps, you must use a text editor to add the new user to your passwd file,
manually.

5. Make sure that the Makefile correctly specifies the directory where the
password input file resides.

6. If appropriate, delete the new user’s entries from /etc/passwd and
/etc/shadow input files.

For security reasons, it is not good practice to maintain user entries in the NIS
master server /etc/passwd and /etc/shadow files. After copying the entries
for the new user to the NIS map source files that are stored in some other
directory, use the userdel command on the master server to delete the new user.

For example, to delete the new user baruch from the master server’s /etc files,
you would enter:

Administering NIS 311

userdel baruch

For more information about userdel , see the userdel man page.

7. Update the NIS passwd maps.

After you have updated the passwd input file on the master server, update the
passwd maps by running make in the directory containing the source file.

userdel baruch
cd /var/yp
/usr/ccs/bin/make passwd

8. Tell the new user the initial password you have assigned to his or her login ID.

After logging in, the new user can run passwd at any time to establish a different
password.

User Passwords
Users run passwd to change their passwords.

% passwd username

(See “Using Passwords” on page 154 for a complete description of password matters
from the users point of view.)

Before users can change their passwords, you must start the rpc.yppasswdd
daemon on the master server to update the password file. The commands for starting
the daemon are already present in the /usr/lib/netsvc/yp/ypstart file.

The rpc.yppasswdd daemon is started automatically by ypstart on the master
server. Notice that when the −moption is given to rpc.yppasswd , a make is forced
in /var/yp immediately following a modification of the file. If you want to avoid
having this make take place each time the passwd file is changed, remove the −m
option from the rpc.yppasswd command in the ypstart script and control the
pushing of the passwd maps through the crontab file.

312 Solaris Naming Administration Guide ♦ May 1999

Note - No arguments should follow the rpc.yppasswd −mcommand. Although
you can edit the ypstart script file to achieve a different action, it is not
recommended that you modify this file other than optionally removing the −m
option. All commands and daemons invoked by this file with the proper set of
command line parameters. If you choose to edit this file, be especially careful when
editing the rpc.yppasswdd command. If you add an explicit call to the
passwd.adjunct file, the exact $PWDIR/security/passwd.adjunct path must
be used; otherwise, incorrect processing results.

Netgroups
NIS netgroups are groups (sets) of users or machines that you define for your
administrative purposes. For example, you can create netgroups that:

� Define a set of users who can access a specific machine

� Define a set of NFS client machines to be given some specific filesystem access.

� Define a set of users who are to have administrator privileges on all the machines
in a particular NIS domain.

Each netgroup is given a netgroup name. Netgroups do not directly set permissions
or access rights. Instead, the netgroup names are used by other NIS maps in places
where a user name or machine name would normally be used. For example, suppose
you created a netgroup of network administrators called netadmins . To grant all
members of the netadmins group access to a given machine, you need only add a
netadmin entry to that machine’s /etc/passwd file. Netgroup names can also be
added to the NIS group map. See the netgroup man page for more detailed
information on using netgroups.

On a network using NIS, the netgroup input file on the master NIS server is used
for generating three maps: netgroup , netgroup.byuser , and netgroup.byhost .
The netgroup map contains the basic information in the netgroup input file. The
two other NIS maps contain information in a format that speeds lookups of netgroup
information, given the machine or user.

Entries in the netgroup input file are in the format: name ID, where name is the name
you give to a netgroup, and ID identifies a machine and/or user who belongs to the
netgroup. You can specify as many ids (members) to a netgroup as you want,
separated by commas. For example, to create a netgroup with three members, the
netgroup input file entry would be in the format: name ID, ID, ID. The member IDs
in a netgroup input file entry are in the format:

([-| machine], [-| user], [domain])

Where machine is a machine name, user is a user ID, and domain is the machine or
user’s NIS domain with each element separated by a comma. The domain element is
optional and should only be used to identify machines or users in some other NIS

Administering NIS 313

domain. The machine and user element of each member’s entry are required, but a
dash (-) is used to denote a null. There is no necessary relationship between the
machine and user elements in an entry.

For example, below are two sample netgroup input file entries, each of which
create a netgroup named admins composed of the users hauri and juanita who
is in the remote domain sales and the machines altair and sirius .

admins (altair, hauri), (sirius,juanita,sales)

admins (altair,-), (sirius,-), (-,hauri), (-,juanita,sales)

Various programs use the netgroup NIS maps for permission checking during login,
remote mount, remote login, and remote shell creation. These programs include:
mountd , login , rlogin , and rsh . The login command consults the netgroup
maps for user classifications if it encounters netgroup names in the passwd database.
The mountd daemon consults the netgroup maps for machine classifications if it
encounters netgroup names in the /etc/dfs/dfstab file. rlogin and rsh (in fact,
any program that uses the ruserok interface) consults the netgroup maps for both
machine and user classifications if they encounter netgroup names in the
/etc/hosts.equiv or .rhosts files.

If you add a new NIS user or machine to your network, be sure to add them to
appropriate netgroups in the netgroup input file. Then use the make and yppush
commands to create the netgroup maps and push them to all of your NIS servers.
See the netgroup man page for detailed information on using netgroups and
netgroup input file syntax.

Working With NIS Maps
The following sections describe how to administer NIS maps.

Obtaining Map Information
Users can obtain information from and about the maps at any time by using the
ypcat , ypwhich , and ypmatch commands. In the examples that follow, mapname
refers both to the official name of a map and to its nickname, if any.

To list all the values in a map, type:

% ypcat mapname

To list both the keys and the values (if any) in a map, type:

314 Solaris Naming Administration Guide ♦ May 1999

% ypcat -k mapname

To list all the map nicknames, type any of the following commands:

% ypcat -x

% ypwhich -x

% ypmatch -x

To list all the available maps and their master(s), type:

% ypwhich -m

To list the master server for a particular map, type:

% ypwhich -m mapname

To match a key with an entry in a map, type:

% ypmatch key mapname

If the item you are looking for is not a key in a map, type:

% ypcat mapname | grep item

Where item is the information you are searching for. To obtain information about
other domains, use the −d domainname options of these commands.

If the machine requesting information for a domain other than its default does not
have a binding for the requested domain, it causes ypbind to consult the
/var/yp/binding/ domainname/ypservers file for a list of servers for that
domain. If this file doesn’t exist it issues an RPC broadcast for a server. In this case,
there must be a server for the requested domain on the same subnet as the
requesting machine.

Changing a Map’s Master Server
To change the master server for a selected map, you first have to build the map on
the new NIS master. Since the old master server name occurs as a key-value pair in
the existing map (this pair is inserted automatically by makedbm), copying the map
to the new master or transferring a copy to the new master with ypxfr is
insufficient. You have to reassociate the key with the new master server name. If the
map has an ASCII source file, you should copy this file to the new master.

Here are instructions for remaking a sample NIS map called sites.byname .

Administering NIS 315

1. Log in to the new master as superuser and type:

newmaster# cd /var/yp

2. Makefile must have an entry for the new map before you specify the map to
make. If this is not the case, edit the Makefile now.

3. To update or remake the map, type:

newmaster# make sites.byname

4. If the old master remains an NIS server, remote log in (rlogin) to the old
master and edit Makefile . Comment out the section of the Makefile that
made sites.byname so that it is no longer made there.

5. If sites.byname only exists as an ndbm file, remake it on the new master by
disassembling a copy from any NIS server, then running the disassembled
version through makedbm:

newmaster# cd /var/yp
newmaster# ypcat -k sites.byname | makedbm - domain/sites.byname

After making the map on the new master, you must send a copy of the new map
to the other slave servers. However, do not use yppush , because the other slaves
will try to get new copies from the old master, rather than the new one. A typical
method for circumventing this is to transfer a copy of the map from the new
master back to the old master. To do this, become superuser on the old master
server and type:

oldmaster# /usr/lib/netsvc/yp/ypxfr -h newmaster sites.byname

Now it is safe to run yppush . The remaining slave servers still believe that the
old master is the current master. They attempt to get the current version of the
map from the old master. When they do so, they will get the new map, which
names the new master as the current master.

If this method fails, you can try this cumbersome but sure-fire option: log in as
root on each NIS server and execute the ypxfr command shown above.

316 Solaris Naming Administration Guide ♦ May 1999

Modifying Configuration Files
NIS intelligently parses the setup files. Although this makes NIS administration
easier, it does make the behavior of NIS more sensitive to changes in the setup and
configuration files.

Use the procedures in this section when modifying any of the following:

� /var/yp/Makefile to add or delete supported maps

� Add or delete /etc/resolv.conf to allow or deny DNS forwarding

� Add or delete $PWDIR/security/passwd.adjunct to allow or deny C2
security. ($PWDIRis defined in /var/yp/Makefile .)

To modify any of the listed files:

1. Stop the NIS server by typing;

/etc/init.d/yp stop

2. Make the necessary changes to your files.

3. Restart the NIS server by typing:

/etc/init.d/yp start

You do not have to stop and start NIS when changing NIS maps or the map source
files.

Keep in mind the following points:

� Deleting a map or source file from a NIS master server does not automatically
result in corresponding deletions from slave servers. You must delete maps and
source files from slave servers by hand.

� New maps do not automatically get pushed to existing slave servers. You must
run ypxfr from the slaves.

Modifying and Using the Makefile
You can modify the Makefile provided by default in /var/yp to suit your needs.
(Be sure to keep an unmodified copy of the original Makefile for future reference.)
You can add or delete maps, and you can change the names of some of the
directories.

To add a new NIS map, you must get copies of the ndbm files for the map into the
/var/yp/ domainname directory on each of the NIS servers in the domain. This is
normally done for you by the Makefile. After deciding which NIS server is the

Administering NIS 317

master of the map, modify the Makefile on the master server so that you can
conveniently rebuild the map. Different servers can be masters of different maps, but
in most cases this leads to administrative confusion, and it is strongly recommended
that you set only one server as the master of all maps.

Typically a human-readable text file is filtered through awk, sed , or grep to make it
suitable for input to makedbm. Refer to the default Makefile for examples. See the
make man page for general information about the make command.

Use the mechanisms already in place in the Makefile when deciding how to create
dependencies that make will recognize. Be aware that make is very sensitive to the
presence or absence of tabs at the beginning of lines within the dependency rules,
and a missing tab can invalidate an entry that is otherwise well formed.

Adding Makefile Entries
To add an entry to the Makefile , do the following:

� Add the name of the database to the all rule

� Write the time rule

� Add the rule for the database

For example, in order for the Makefile to work on automounter input files, you
would have to add the auto_direct.time and auto_home.time maps to the
NIS database.

To add these maps to the NIS database:

1. Modify the line that starts with the word all by adding the name(s) of the
database you want to add:

all: passwd group hosts ethers networks rpc services protocols \
netgroup bootparams aliases netid netmasks \
auto_direct auto_home auto_direct.time auto_home.time

The order of the entries is not relevant, but the blank space at the beginning of
the continuation lines must be a Tab, not spaces.

2. Add the following lines at the end of the Makefile :

318 Solaris Naming Administration Guide ♦ May 1999

auto_direct: auto_direct.time
auto_home: auto_home.time

3. Add an entry for auto_direct.time in the middle of the file.

auto_direct.time: $(DIR)/auto_direct
@(while read L; do echo $$L; done < $(DIR)/auto_direct
$(CHKPIPE)) | \ (sed -e "/^#/d" -e "s/#.*$$//" -e "/^ *$$/d"
$(CHKPIPE)) | \ $(MAKEDBM) - $(YPDBDIR)/$(DOM)/auto_direct;
@touch auto_direct.time;
@echo "updated auto_direct";
@if [! $(NOPUSH)]; then $(YPPUSH) auto_direct; fi
@if [! $(NOPUSH)]; then echo "pushed auto_direct"; fi

Where:

� CHKPIPEmakes certain that the operations to the left of the pipe (|) are
successfully completed before piping the results to next commands. If the
operations to the left of the pipe do not successfully complete, the process is
terminated with a “NIS make terminated ” message.

� NOPUSH prevents the makefile from calling yppush to transfer the new map
to the slave servers. If NOPUSHis not set, the push is done automatically.

The while loop at the beginning is designed to eliminate any backslash-extended
lines in the input file. The sed script eliminates comment and empty lines, and
feeds the output to

The same procedure should be followed for all other automounter maps such as
auto_home , or any other nondefault maps.

4. Run make.

make name

Where name is the name of the map you want to make. For example,
auto_direct .

Deleting Makefile Entries

If you do not want the Makefile to produce maps for a specific database, edit the
Makefile as follows:

1. Delete the name of the database from the all rule.

Administering NIS 319

2. Delete or comment out the database rule for the database you want to delete.

For example, to delete the hosts database, the hosts.time entry should be
removed.

3. Remove the time rule.

For example, to delete the hosts database, the hosts: hosts.time entry
should be removed.

4. Remove the map from the master and slave servers.

Changing Makefile Macros/Variables
You can change the settings of the variables defined at the top of the Makefile
simply by changing the value to the right of the equal sign (=). For instance, if you
do not want to use the files located in /etc as input for the maps, but you would
rather use files located in another directory, such as /var/etc/domainname , you
should change the value of DIR from DIR=/etc to DIR=/var/etc/ domainname.
You may also change the value of PWDIRfrom PWDIR=/etc to
PWDIR=/var/etc/ domainname.

The variables are:

� DIR= The directory containing all of the NIS input files except passwd and
shadow . The default value is /etc . Since it is not good practice to use the files in
the master server’s /etc directory as NIS input files, you should change this
value.

� PWDIR= The directory containing the passwd and shadow NIS input files. Since
it is not good practice to use the files in the master server’s /etc directory as NIS
input files, you should change this value.

� DOM= The NIS domain name. The default value of DOMis set using the
domainname command. Remember that most NIS commands use the current
machine’s domain which is set in the machine’s /etc/defaultdomain file.

Updating Existing Maps
After you have installed NIS, you may discover that some maps require frequent
updating while others never need to change. For example, the passwd.byname map
may change frequently on a large company’s network. On the other hand, the
auto_master map changes little, if at all.

When you need to update a map, you can use one of two updating procedures,
depending on whether it is a default map or not.

� A default map is a map in the default set created by ypinit from the network
databases.

320 Solaris Naming Administration Guide ♦ May 1999

� Nondefault maps may be any of the following:

� Maps included with an application purchased from a vendor
� Maps created specifically for your site
� Maps created from a nontext file

The following sections explain how to use various updating tools. In practice, you
may decide to only use them if you add nondefault maps or change the set of NIS
servers after the system is already up and running.

Modifying Default Maps
Use the following procedure for updating maps supplied with the default set.

1. Become root on the master server.

Always modify NIS maps only on the master server.

2. Edit the source file for the map you want to change, whether that file resides in
/etc or in some other directory of your choice.

3. Type the following:

cd /var/yp# make mapname

The make command then updates your map according to the changes you made
in its corresponding file. It also propagates the changes among the other servers.

Modifying Nondefault Maps
To update a nondefault map, you must:

1. Create or edit its corresponding text file.

2. Build (or rebuild) the new or updated map. There are two ways to build a map:

� Use the Makefile. Using the Makefile is the preferred method of building a
non-default map. If the map has an entry in the Makefile , simply run make
name where name is the name of map you want to build. If the map does not
have a Makefile entry, try to create one following the instructions in
“Modifying and Using the Makefile ” on page 317.

� Use the /usr/sbin/makedbm program. (The makedbmman page fully
describes this command.)

Using makedbm to Modify a Non-Default Map
There are two different methods for using makedbm to modify maps if you do not
have an input file:

Administering NIS 321

� Redirect the makedbm−u output to a temporary file, modify the file, then use the
modified file as input to makedbm.

� Have the output of makedbm−u operated on within a pipeline that feeds into
makedbm. This is appropriate if you can update the disassembled map with either
awk, sed , or a cat append.

Creating New Maps
To create new maps, you can use one of two possible procedures: the first method
uses an existing text file as input; the second uses standard input.

Creating Maps From Text Files
Assume that a text file /var/yp/mymap.asc was created with an editor or a shell
script on the master. You want to create an NIS map from this file and locate it in the
homedomain subdirectory. To do this, type the following on the master server:

cd /var/yp
makedbm mymap.asc homedomain/ mymap

The mymap map now exists on the master server in the directory homedomain. To
distribute the new map to slave servers run ypxfr .

Adding Entries to a File-Based Map
Adding entries to mymapis simple. First, you must modify the text file
/var/yp/ mymap.asc . (If you modify the actual dbm files without modifying the
corresponding text file, the modifications are lost.) Then run makedbm as shown
above.

Creating Maps From Standard Input
When no original text file exists, create the NIS map from the keyboard by typing
input to makedbm, as shown below (end with Control-D):

ypmaster# cd /var/yp
ypmaster# makedbm - homedomain/mymapkey1 value1 key2 value2 key3 value3
ypmaster#

322 Solaris Naming Administration Guide ♦ May 1999

Modifying Maps Made From Standard Input

If you later need to modify the map, you can use makedbm to disassemble the map
and create a temporary text intermediate file. To disassemble the map and create a
temporary file, type the following:

% cd /var/yp
% makedbm -u homedomain/ mymap > mymap.temp

The resulting temporary file mymap.temp has one entry per line. You can edit this
file as needed, using any text editor.

To update the map, give the name of the modified temporary file to makedbm by
typing the following:

% makedbmmymap.temp homedomain/ mymap
% rm mymap.temp

Then propagate the map to the slave servers, by becoming root and typing:

yppush mymap

The preceding paragraphs explained how to use makedbm to create maps; however,
almost everything you actually have to do can be done by ypinit and Makefile
unless you add nondefault maps to the database or change the set of NIS servers
after the system is already up and running.

Whether you use the Makefile in /var/yp or some other procedure the goal is the
same: a new pair of well-formed dbm files must end up in the maps directory on the
master server.

Propagating an NIS Map
After a map is changed, the Makefile uses yppush to propagate a new map to the
slave servers (unless NOPUSHis set in the Makefile). It does this by informing the
ypserv daemon and sending a map transfer request. The ypserv daemon on the
slave then starts a ypxfr process, which in turn contacts the ypxfrd daemon on the
master server. Some basic checks are made (for example did the map really change?)
and then the map is transferred. ypxfr on the slave then sends a response to the
yppush process indicating whether the transfer succeeded.

Note - The above procedure will not work for newly created maps that do not yet
exist on the slave servers. New maps must be sent to the slave servers by running
ypxfr on the slaves.

Administering NIS 323

Occasionally, maps fail to propagate and you must to use ypxfr manually to send
new map information. You may choose to use ypxfr in two different ways:
periodically through the root crontab file, or interactively on the command line.
These approaches are discussed in the following sections.

Using cron For Map Transfers
Maps have different rates of change. For instance, some may not change for months
at a time, such as protocols.byname among the default maps and auto_master
among the nondefault maps; but passwd.byname may change several times a day.
Scheduling map transfer using the crontab command allows you to set specific
propagation times for individual maps.

To periodically run ypxfr at a rate appropriate for the map, the root crontab file
on each slave server should contain the appropriate ypxfr entries. ypxfr contacts
the master server and transfers the map only if the copy on the master server is more
recent than the local copy.

Note - If your master server runs rpc.yppasswdd with the default −moption, then
each time someone changes their yp password, the passwd daemon runs make,
which rebuilds the passwd maps.

Using Shell Scripts with cron and ypxfr

As an alternative to creating separate crontab entries for each map, you may prefer
to have the root crontab command run a shell script that periodically updates all
maps. There are sample map-updating shell scripts in the /usr/lib/netsvc/yp
directory. The script names are ypxfr_1perday , ypxfr_1perhour , and
ypxfr_2perday . You can easily modify or replace these shell scripts to fit your site
requirements. Code Example 19–1 shows the default ypxfr_1perday shell script.

CODE EXAMPLE 19–1 ypxfr_1perday Shell Script

#! /bin/sh
#
ypxfr_1perday.sh - Do daily yp map check/updates
PATH=/bin:/usr/bin:/usr/lib/netsvc/yp:$PATH
export PATH
set -xv
ypxfr group.byname
ypxfr group.bygid
ypxfr protocols.byname
ypxfr protocols.bynumber
ypxfr networks.byname

(continued)

324 Solaris Naming Administration Guide ♦ May 1999

(Continuation)

ypxfr networks.byaddr
ypxfr services.byname
ypxfr ypservers

This shell script updates the maps once per day, if the root crontab is executed
daily. You can also have scripts that update maps once a week, once a month, once
every hour, and so forth, but be aware of the performance degradation implied in
frequently propagating the maps.

Run the same shell scripts as root on each slave server configured for the NIS
domain. Alter the exact time of execution from one server to another to avoid
bogging down the master.

If you want to transfer the map from a particular slave server, use the −h machine
option of ypxfr within the shell script. Here is the syntax of the commands you put
in the script:

/usr/lib/netsvc/yp/ypxfr -h machine [-c] mapname

Where machine is the name of the server with the maps you want to transfer, and
mapname is the name of the requested map. If you use the −h option without
specifying a machine, ypxfr tries to get the map from the master server. If ypserv
is not running locally at the time ypxfr is executed, you must use the −c flag so that
ypxfr does not send a clear current map request to the local ypserver .

You can use the −s domain option to transfer maps from another domain to your
local domain. These maps should be the same across domains. For example, two
domains might share the same services.byname and services.byaddr maps.
Alternatively, you can use rcp , or rdist for more control, to transfer files across
domains.

Directly Invoking ypxfr

The second method of invoking ypxfr is to run it as a command. Typically, you do
this only in exceptional situations—for example, when setting up a temporary NIS
server to create a test environment or when trying to quickly get an NIS server that
has been out of service consistent with the other servers.

Logging ypxfr Activity
The transfer attempts and results of ypxfr can be captured in a log file. If a file
called /var/yp/ypxfr.log exists, results are appended to it. No attempt to limit

Administering NIS 325

the size of the log file is made. To prevent it from growing indefinitely, empty it from
time to time by typing:

cd /var/yp
cp ypxfr.log ypxfr.log.old
cat /dev/null > /var/yp/ypxfr.log

You can have crontab execute these commands once a week. To turn off logging,
remove the log file.

Adding a New Slave Server
After NIS is running, you may need to create a new NIS slave server that you did
not include in the initial list given to ypinit .

To add a new NIS server:

1. Log in to the master server as root.

2. Change to the NIS domain directory by typing:

cd /var/yp/ domainname

3. Disassemble the ypservers file, as follows:

makedbm -u ypservers >/tmp/temp_file

The makedbm command converts ypservers from ndbm format to a temporary
ASCII file /tmp/temp_file .

4. Edit the /tmp/temp_file file using a text editor. Add the name of the new
slave server to the list of servers. Then save and close the file.

5. Run the makedbm command with temp_file as the input file and ypservers
as the output file:

makedbm /tmp/temp_file ypservers

makedbm then converts ypservers back into ndbm format.

6. Verify that the ypservers map is correct (since there is no ASCII file for
ypservers) by typing:

326 Solaris Naming Administration Guide ♦ May 1999

slave3# makedbm -u ypservers

The makedbm command displays each entry in ypservers on your screen.

Note - If a machine name is not in ypservers , it will not receive updates to the
map files because yppush consults this map for the list of slave servers.

7. Set up the new slave server’s NIS domain directory by copying the NIS map
set from the master server.

To do this, log in to the new NIS slave as superuser and run the ypinit and
ypbind commands:

slave3# cd /var/yp
slave3# ypinit -c list of servers
slave3# /usr/lib/netsvc/yp/ypbind

8. To initialize this machine as a slave, type the following:

/usr/sbin/ypinit -s ypmaster

Where ypmaster is the machine name of the existing NIS master server.

9. Run ypstop to stop the machine running as a NIS client.

#/usr/lib/netsvc/up/ypstop

10. Run ypstart to start NIS slave service.

#/usr/lib/netsvc/up/ypstart

See the Solaris Naming Setup and Configuration Guide for a more detailed
description of setting up NIS slave servers.

Administering NIS 327

Using NIS with C2 Security
If the $PWDIR/security/passwd.adjunct file is present, C2 security is started
automatically. ($PWDIRis defined in /var/yp/Makefile .) The C2 security mode
uses the passwd.adjunct file to create the passwd.adjunct NIS map. In this
implementation, NIS allows you to use both the passwd.adjunct file and shadow
file to manage security. The passwd.adjunct file is only processed when you type:

make passwd.adjunct

The make passwd command only processes the passwd map not the
passwd.adjunct map when you run make manually in the C2 security mode.

Changing a Machine’s NIS Domain
To change the NIS domain name of a machine:

1. Edit the machine’s /etc/defaultdomain file, exchanging its present contents
with the new domain name for the machine.

For example, if the current domain name is sales.doc.com , you might change
it to research.doc.com .

2. Run domainname ‘cat /etc/defaultdomain’

3. Then set the machine up as a NIS client, slave, or master server.

See Solaris Naming Setup and Configuration Guide for details.

Using NIS in Conjunction With DNS
Typically, NIS clients are configured with the nsswitch.conf file to use only NIS
for machine name and address lookups. If this type of lookup fails, an NIS server
may forward these lookups to DNS.

To configure machine name and address lookup to occur through NIS and then
through DNS:

328 Solaris Naming Administration Guide ♦ May 1999

1. The two maps hosts.byname and hosts.byaddr must have the
YP_INTERDOMAINkey in them; to set this key, edit the Makefile and modify
the lines (at the top of the file) from:

#B=-b
B=

to:

B=-b
#B=

This tells makedbm to start with the −b flag when making the maps, and the
YP_INTERDOMAINkey will be inserted into the ndbm files.

2. Run make to rebuild that maps.

/usr/ccs/bin/make hosts

3. Make sure that all NIS servers have an /etc/resolv.conf file that points to
valid name server(s).

4. To enable DNS forwarding, stop each server with the ypstop command

/usr/lib/netsvc/yp/ypstop

5. Restart each server with the ypstart command:

/usr/lib/netsvc/yp/ypstart

In this implementation of NIS, if a /etc/resolve.conf file exists on the server,
ypstart automatically starts the ypserv daemon with the −d option to forward
requests to DNS.

Note - If you have NIS servers that are not running the Solaris Release 2, then
you must make sure that the YP_INTERDOMAINkey is present in the host maps
for DNS to be consulted.

Administering NIS 329

Problems in Mixed NIS Domains
Most of the preceding information assumes that both master and slave servers in the
NIS domain are running the Solaris Release 2. If that is not the case, problems may
arise. Table 19–1 summarizes how to successfully avoid problems in mixed NIS
domains. The notation “4.0.3+” means “release 4.0.3 of the SunOS operating
environment or later.” The command makedbm −b is a reference to the “−B” variable
in the Makefile .

TABLE 19–1 NIS/DNS in Heterogeneous NIS Domains

Slave Master

4.0.3+ Solaris NIS

4.0.3+ Master: makedbm -b
Slave: ypxfr

Master: makedbm -b Slave:
ypxfr -b

Master: ypserv -d Slave:
ypxfr -b

Solaris NIS Master: makedbm -b
Slave: ypxfr

Master: makedbm -b Slave:
ypxfr

Master: ypserv -d Slave:
ypxfr with resolve.conf or
ypxfr -b

Turning Off NIS Services
If ypserv on the master is disabled, you can no longer update any of the NIS maps.
If you choose to turn off NIS on a network currently running it, you can disable NIS
after the next reboot by simply renaming the ypbind file to ypbind.orig , as
follows:

% mv /usr/lib/netsvc/yp/ypbind /usr/lib/netsvc/yp/ypbind.orig

To disable NIS after the next reboot on a particular NIS slave or master, type the
following on the server in question:

% mv /usr/lib/netsvc/yp/ypserv /usr/lib/netsvc/yp/ypserv.orig

To stop NIS immediately, type:

% /usr/lib/netsvc/yp/ypstop

The NIS service is automatically restarted after the next reboot unless the ypbind
and ypserv files are renamed as described above.

330 Solaris Naming Administration Guide ♦ May 1999

NIS Problem Solving and Error
Messages
� See “NIS Problems and Solutions” on page 549 and “NIS+ and NIS Compatibility

Problems” on page 524 for problem solving information.

� Appendix B, for an alphabetic list of the more common namespace error messages
and their meanings.

Administering NIS 331

332 Solaris Naming Administration Guide ♦ May 1999

PART V Administering FNS

This part describes the Federated Naming Service (FNS) and how to administer it.

� Chapter 20

� Chapter 21

� Chapter 22

� Chapter 23

� Chapter 24

� Chapter 25

� Chapter 26

� Chapter 27

CHAPTER 20

FNS Quickstart

This chapter provides a summary overview of FNS, a brief description of set up and
configuration steps, and a programming example. Experienced administrators may
find that this quick start chapter is all that they need.

� “Federated Naming Service (FNS)” on page 336

� “Composite Names and Contexts” on page 336

� “Enterprise Naming Services” on page 338

� “Global Naming Services” on page 339

� “FNS Naming Policies” on page 340

� “Organization Names” on page 340

� “Site Names” on page 341

� “User Names” on page 342

� “Host Names” on page 342

� “Service Names” on page 342

� “File Names” on page 343

� “Getting Started” on page 343

� “Browsing the FNS Namespace” on page 345

� “Updating the Namespace” on page 348

� “Federating a Global Namespace” on page 356

� “Namespace Browser Programming Examples” on page 358

For more detailed information, see the remaining chapters of this part. For more
detailed initial FNS set up and configuration information, see Solaris Naming Setup
and Configuration Guide.

335

Federated Naming Service (FNS)
Federated Naming Service (FNS) provides a method for federating multiple naming
services under a single, simple interface for naming and directory operations.
Naming services that can be linked with FNS include: NIS+, NIS, files, DNS, and
X.500/LDAP.

X/Open Federated Naming (XFN)
The programming interface and policies that FNS supports are specified by XFN (X/
Open Federated Naming).

Why FNS?
FNS is useful for the following reasons:

� A single uniform naming and directory interface is provided to clients for
accessing naming and directory services. Consequently, the addition of new
naming and directory services does not require changes to applications or existing
services.

� Names can be composed in a uniform way. FNS defines a way to uniformly
compose names from different naming systems so that applications can uniformly
address objects in these different naming systems.

� Coherent naming is encouraged through the use of shared contexts and shared
names. Different applications can use these shared names and contexts and need
not duplicate the work.

Composite Names and Contexts
Fundamental to FNS are the notions of composite names and contexts.

Composite Names
A composite name is a name that spans multiple naming systems.

A composite name consists of an ordered list of components. Each component is a
name from the namespace of a single naming system. Individual naming systems are

336 Solaris Naming Administration Guide ♦ May 1999

responsible for the syntax of each component. FNS defines the syntax for constructing
a composite name using names from component naming systems. Composite names
are composed left to right using the slash character (/) as the component separator.

For example, the composite name .../doc.com/site/bldg-5.alameda consists
of four components: ... , doc.com , site , and bldg-5.alameda .

Contexts
A context provides operations for:

� Associating (binding) names to objects

� Resolving names to objects

� Removing bindings

� Listing names

� Renaming

� Associating attributes with named objects

� Retrieving and updating attributes associated with named objects

� Searching for objects using attributes

A context contains a set of name-to-reference bindings. Each reference contains a list
of communication end-points or addresses. The federated naming system is formed
by contexts from one naming system being bound in the contexts of another naming
system. Resolution of a composite name proceeds from contexts within one naming
system to those in the next until the name is resolved.

Attributes
Attributes may be applied to named objects. Attributes are optional. A named object
can have no attributes, one attribute, or multiple attributes.

Each attribute has a unique attribute identifier, an attribute syntax, and a set of zero
or more distinct attribute values.

XFN defines the base attribute interface for examining and modifying the values of
attributes associated with existing named objects. These objects can be contexts or
any other types of objects. Associated with a context are syntax attributes that
describe how the context parses compound names.

The extended attribute interface contains operations that search for specific attributes
and that create objects and their associated attributes.

FNS Quickstart 337

Enterprise Naming Services
Enterprise-level naming services are used to name objects within an enterprise. FNS
currently supports three enterprise-level naming services:

� NIS+ (see “NIS+” on page 338 below).

� NIS (see “NIS” on page 338).

� Files (see “Files-Based” on page 339).

NIS+
NIS+ is the preferred enterprise-wide information service in the Solaris 2.6 release
environment. FNS organization units correspond to NIS+ domains and subdomains.
There is one orgunit context for each domain and subdomain.

Under NIS+, FNS context and attribute data are stored in NIS+ tables. These tables
are stored in NIS+ directory objects named ctx_dir . There is a ctx_dir directory
object for each NIS+ domain and subdomain, residing at the same level as the
domain’s groups_dir and org_dir directory objects. Thus, the directory object
ctx_dir.sales.doc.com. contains FNS tables which store FNS context and
attribute data for the sales.doc.com domain.

Under NIS+, you use FNS and NIS+ commands to work with the information in FNS
tables. Do not edit these tables directly or manipulate them with UNIX commands.

NIS
NIS is an enterprise-wide information service in the Solaris environment. Each
enterprise is a single NIS domain. There is one FNS organizational unit which
corresponds to the single NIS domain.

Under NIS, FNS context and attribute data are stored in NIS maps. These maps are
stored in a /var/yp/ domainname directory on a NIS server. Under NIS, the super
user can use FNS commands to work with the information in FNS maps.

NIS Clients Can Update Contexts With FNS if SKI is Running
If certain conditions are met, any NIS client (machine, process, or user) can use FNS
commands such as fncreate_fs or fncreate_printer to update the client’s
own contexts. This allows NIS clients to use FNS commands to update applications
such as Printer Administrator, CDE Calendar Manager, Admin Tool and others.

338 Solaris Naming Administration Guide ♦ May 1999

For non-super-users to update their own contexts with FNS commands, the
following conditions must be met:

� Secure Key_management Infrastructure (SKI) must be available on the NIS master
server.

� The fnsypd daemon must be running on the NIS master server. This daemon
must be started by someone with super user privileges.

� A client user or machine is only allowed to update its own context.

� The client must be authorized to perform the requested update.

Note - SKI does not support 64–bit mode. Thus, NIS clients cannot update contexts
in 64–bit mode.

Files-Based
Files refers to the naming files normally found in a machine’s /etc directory. These
machine-based files contain UNIX user and password information, host information,
mail aliases, and so forth. They also support Solaris-specific data such as the
automount maps.

Under a files-based naming system, FNS context and attribute data is stored in files.
These FNS files are stored in machine’s /var/fn directory. (The /var/fn directory
does not have to be on each machine, it could be exported from an NFS file server.)

Under a files naming system, you use FNS commands to work with the information
in FNS files.

Global Naming Services
FNS also supports federating NIS+ and NIS with DNS and X.500. This means that
you can connect enterprise level namespaces with global namespaces to make the
enterprise objects accessible in the global scope.

FNS currently supports the following global naming services:

� DNS

� X.500 (via DAP or LDAP)

FNS Quickstart 339

FNS Naming Policies
FNS defines naming policies so that users and applications can depend on and use
the shared namespace.

Within an enterprise, there are namespaces for organizational units, sites, hosts, users,
files and services, referred to by the names orgunit , site , host , user , fs (for file
system), and service . These namespaces can also be named by preceding each
name with an underscore (_). For example, host and _host are considered identical.

Table 20–1 summarizes the FNS policies for enterprise-level namespaces.

TABLE 20–1 FNS Policy Summary

Context Type Subordinate Contexts Parent Contexts

orgunit _orgunit site user host fs
service

enterprise root

site _site user host fs service enterprise root

orgunit

user _user service fs enterprise root

orgunit

host _host service fs enterprise root

orgunit

service _service Printer and other
applications

enterprise root

orgunit site user host

fs _fs (file system) (none) enterprise rootorgunit
site user host

Organization Names
The binding of an FNS orgunit is determined by the underlying naming service:

340 Solaris Naming Administration Guide ♦ May 1999

� Under NIS+, an organizational unit corresponds to an NIS+ domain or
subdomain. For example, assume that the NIS+ root domain is doc.com. and
sales is a subdomain of doc.com. Then, the FNS names
org/sales.doc.com. and org/sales both refer to the organizational unit
corresponding to the NIS+ domain sales.doc.com. (Note the trailing dot in
sales.doc.com. which is required for fully qualified NIS+ names.)

� Under NIS, an organizational unit is the NIS domain which is always identified by
the FNS name org// or org/ domainname where domainname is a fully qualified
domain name such as doc.com . Under NIS, there is no hierarchy in
organizational unit names.

� Under a files-based naming system, the organizational unit is the system which is
always identified by the FNS name org// .

The types of objects that may be named relative to an organizational unit name are:
user , host , service , fs , and site . For example:

� org/sales/site/conference1.bldg-6 names a conference room
conference1 located in building #6 of the site associated with the organizational
unit sales . In this example, if org/sales corresponds to sales.doc.com ,
another way to name this object would be: org/sales.doc.com. /
site/conference1.bldg-6 (note the trailing dot in sales.doc.com.)

� org/finance/user/mjones names a user mjones in the organizational unit
finance .

� org/finance/host/inmail names a machine inmail belonging to the
organizational unit finance .

� org/accounts.finance/fs/pub/reports/FY92-124 names a file
pub/reports/FY92-124 belonging to the organizational unit
accounts.finance .

� org/accounts.finance/service/calendar names the calendar service of
the organizational unit accounts.finance . This might manage the meeting
schedules of the organizational unit.

Site Names
Site names are created as needed. The types of objects that may be named relative to
a site name are: user , host , service and fs . For example:

� site/alameda/user/mjones names a user mjones at the site alameda .

� site/alameda/host/sirius names a machine sirius at the site alameda .

� site/alameda/service/printer/Sparc-2 names the printer Sparc-2 at the
site alameda .

� site/alameda/fs/usr/dist names a file directory usr/dist available in the
site alameda .

FNS Quickstart 341

User Names
User names correspond to names in the corresponding passwd table in NIS+, the
passwd map in NIS, or the /etc/passwd file under files. A user’s file context is
obtained from his or her passwd entry.

The types of objects that may be named relative to a user name are: service , and
fs . For example:

� user/chou/service/fax names the fax service of the user chou .

� user/esperanza/fs/projects/conf96.doc names the file conf96.doc in
the projects subdirectory of the user esperanza ’s file system.

Host Names
Host names correspond to names in the corresponding hosts table in NIS+, the
hosts map in NIS, or the /etc/hosts file under files. The host’s file context
corresponds to the files systems exported by the host.

The types of objects that may be named relative to a host name are: service , and
fs . For example:

� host/smtp-1/service/mailbox names the mailbox service associated with the
machine smtp-1 .

� host/deneb/fs/etc/.cshrc names the file .cshrc in the /etc directory on
the host deneb .

Service Names
Service names correspond to, and are determined by, service applications. The
service context must be named relative to an organization, user, host, or site context.
For example:

� org//service/printer names the organization’s printer service.

� host/deneb/service/printer names the printer service associated with the
machine deneb .

� host/deneb/service/printer/Sparc-2 names the printer associated with
the machine deneb .

� user/charlie/service/calendar names the user charlie ’s calendar
service.

� site/conf_pine.bldg-7.alameda/service/calendar names the calendar
service for the conf_pine conference room in Building 7 at the Alameda site.

342 Solaris Naming Administration Guide ♦ May 1999

File Names
File system names correspond to file names. For example:

� host/altair/fs/etc/.login names the .login file on the machine altair .

� user/prasad/fs/projects/96draft.doc names the file 96draft.doc in
the user prasad ’s projects directory.

Getting Started
To begin using FNS with your underlying name service, you run the fncreate
command.

The fncreate command recognizes the underlying naming service in which FNS
contexts are to be created (such as, NIS+, NIS, or files). To specify a specific naming
service, you must run the fnselect command as explained in “Designating a
Non-Default Naming Service” on page 343, below.

Designating a Non-Default Naming Service
By default:

� If fncreate is executed on a machine that is an NIS+ client or server, the FNS
namespace will be set up in NIS+. (See Solaris Naming Setup and Configuration
Guide if you want or need to designate some other machine as an FNS NIS+
master server.)

� If the machine is an NIS client, the namespace will be set up in NIS.

� If the machine is neither, the namespace will be set up in the machine’s /var/fn
directory. When your underlying naming system is files-based, the common
practice is to create /var/fn by running fncreate on each machine. It is
possible however to create /var/fn on one machine and export it by NFS to be
mounted by other clients.

You can also explicitly specify a non-default target naming service by using the
fnselect command. For example the following command selects the target naming
service to be NIS.

fnselect nis

Creating the FNS Namespace
Once the naming service has been selected either using the default policy or
explicitly via fnselect , you can execute the following command to create the FNS
namespace:

FNS Quickstart 343

fncreate -t org org//

This creates all the necessary contexts for users and hosts in the corresponding
naming service.

NIS+ Considerations
When your primary enterprise-level naming service is NIS+, take into account the
following points.

NIS+ Domains and Subdomains
The command syntax shown above creates the FNS namespace for the root NIS+
domain. To specify a domain other than the root, add the domain name between the
double slashes, as in:

fncreate -t org org/sales.doc.com./

Note the trailing dot after the fully qualified sales.doc.com. domain name.

Space and Performance Considerations
The fncreate commands creates NIS+ tables and directories in the ctx_dir
directory. The ctx_dir directory object resides at the same level as the NIS+
groups_dir and org_dir directory objects of the domain.

� With a large domain, the additional space required on the NIS+ server could be
substantial and in a large installation performance might be improved by using
separate servers for FNS and the standard NIS+ tables. See Solaris Naming Setup
and Configuration Guide for information on how to use separate servers for FNS
and NIS+.

� In a large, or mission-critical domain, FNS service should be replicated. See Solaris
Naming Setup and Configuration Guide for information on how to replicate FNS
service.

NIS+ Security Requirements
The user who runs fncreate and other FNS commands is expected to have the
necessary NIS+ credentials.

The environment variable NIS_GROUPspecifies the group owner for the NIS+ objects
created by fncreate . In order to facilitate administration of the NIS+ objects,
NIS_GROUPshould be set to the name of the NIS+ group responsible for FNS

344 Solaris Naming Administration Guide ♦ May 1999

administration for that domain prior to executing fncreate and other FNS
commands.

Changes to NIS+ related properties, including default access control rights, could be
effected using NIS+ administration tools and interfaces after the context has been
created. The NIS+ object name that corresponds to an FNS composite name can be
obtained using fnlookup and fnlist , described later in this document.

NIS Considerations
The fncreate command must be executed by superuser on the NIS system that will
serve as the NIS master server for the FNS maps.

The NIS maps used by FNS are stored in /var/yp/ domainname.

Any changes to the FNS information can only be done by the superuser on the FNS
NIS master server using FNS commands.

Files Considerations
When using fncreate with the −t org option to create your FNS namespace, the
command must be executed by superuser on the machine that owns the file system
on which /var is located. The files used by FNS are stored in the /var/fn directory.

Once users’ contexts are created, users are allowed to modify their own contexts
based on their UNIX credentials.

If exported, the file system /var/fn can be mounted by other systems to access the
FNS namespace.

Browsing the FNS Namespace
Once the namespace has been set up, you can browse using the following commands:

� fnlist to list context contents (see “Listing Context Contents” on page 346
below)

� fnlookup to display the bindings of a composite name (see “Displaying the
Bindings of a Composite Name” on page 346).

� fnattr to show the attributes of a composite name (see “Showing the Attributes
of a Composite Name” on page 347).

FNS Quickstart 345

Listing Context Contents
The fnlist command displays the names and references bound in the context of
name.

fnlist [-lvA] [name]

TABLE 20–2 fnlist Command Options

Option Description

name A composite name. Displays the names bound in the context of name

−v
Verbose. Displays the binding in more detail

−l
Also displays the bindings of the names bound in the named context

−A
Forces fnlist to obtain its information from the authoritative server. Under
NIS and NIS+, that is the domain master server. The −A option has no effect
when the primary naming service is files.

For example:

To list names in the initial context:

% fnlist

To list in detail all the users in the current organizational unit:

% fnlist -v user

To list the contents of the service context for the user pug :

% fnlist user/pug/service

To list names and bindings from the authoritative server:

% fnlist -l -A

Displaying the Bindings of a Composite Name
The fnlookup command shows the binding of the given composite name.

fnlookup [-vAL] [name]

346 Solaris Naming Administration Guide ♦ May 1999

TABLE 20–3 fnlookup Command Options

Option Description

name The name of a context. Displays the binding and XFN link of name

−v
Verbose. Displays the binding in more detail

−L
Also displays the XFN link that the name is bound to

−A
Forces fnlist to obtain its information from the authoritative server. Under
NIS and NIS+, that is the domain master server. The −A option has no effect
when the primary naming service is files-based.

For example: to display the binding of user/ana/service/printer :

fnlookup user/ana/service/printer

Showing the Attributes of a Composite Name
The fnattr command displays (and updates) the attributes of the given composite
name.

For example, to search for the attributes associated with a user named ada :

fnattr user/ada

To search for the attributes associated with a printer named laser-9 :

fnattr thisorgunit/service/printer/laser-9

See “Working With Attributes” on page 355 for more details.

Searching for FNS Information
The fnsearch command displays the names and, optionally, the attributes and
references of objects bound at or below a composite name whose attributes satisfy
the given search criteria.

For example:

To list the users and their attributes who have an attribute called realname :

% fnsearch user realname

To list the users with the attribute realname whose value is Ravi Chattha :

FNS Quickstart 347

% fnsearch user ‘‘realname == ’Ravi Chattha’’’

The fnsearch command uses the common Boolean operators. Note the use of
double and single quotes and double equals sign in the above example.

Updating the Namespace
Once the namespace has been set up, you can add, delete, and modify elements
using the following commands:

� fnbind to bind new references to a composite name (see “Binding a Reference to
a Composite Name” on page 349, below).

� fnunbind to remove bindings (see “Removing Bindings” on page 351).

� fncreate to create new organization, user, host, site, and service contexts (see
“Creating New Contexts” on page 351).

� fncreate_fs to create new file system contexts (see “Creating File Contexts” on
page 352).

� fncreate_printer to create new printer contexts (see “Creating Printer
Contexts” on page 353).

� fndestroy to destroy contexts (see “Destroying Contexts” on page 355).

� fnattr to display, create, modify, and remove attributes (see “Working With
Attributes” on page 355).

� fncopy to copy FNS contexts and attributes from one naming service to another
(see “Copying and Converting FNS Contexts” on page 357).

FNS Administration Privileges
FNS System administration varies according to the underlying naming service:

� NIS+. Under NIS+, FNS system administration tasks can only be performed by
those with authorization to do so. The usual method of granting system
administration privileges is to create an NIS+ group and assign that group the
necessary privileges for that domain. Any member of the group can then perform
system administration functions.

� NIS. Under NIS, FNS administration tasks must be performed by root on the NIS
master server.

� Files. Under a files-based naming system, FNS administration tasks must be
performed by someone with root access to the /var/fn directory.

The ability of users to make changes to their own user sub-contexts varies according
to the underlying naming service:

348 Solaris Naming Administration Guide ♦ May 1999

� NIS+. Under NIS+, a user’s context (and associated sub-contexts) are owned by
them. When logged in as an NIS+ principle, users who have the appropriate
credentials and privileges can make changes to their own context using the
fncreate , fnbind , fnunbind , and similar commands.

� NIS. Under NIS, users cannot make any changes to any FNS data. Only those with
root access on the NIS master server can change FNS data.

� Files. Under a files-based naming system, users own their own contexts. Standard
UNIX access controls apply to FNS files.

Binding a Reference to a Composite Name
The fnbind command is used to bind an existing reference (name) to a new
composite name.

fnbind -r [-s][-v][-L] name [-O|-U] newname reftype addrtype [-c|-x] address

TABLE 20–4 fnbind Command Options

Option Description

name
The existing composite name

newname The composite name of the new binding

addrtype Address type to use. Applications-specific such as onc_cal_str .

address Address contents to use. For example, tsvi@altair .

reftype Reference type to use. Applications-specific such as one_calendar .

−s
Bind to newname even if it is already bound. This replaces the previous
binding of newname. Without −s , fnbind fails if newname is already
bound.

−v
Display the reference that will be bound to newname.

−L
Create an XFN link using oldname and bind it to newname.

FNS Quickstart 349

TABLE 20–4 fnbind Command Options (continued)

Option Description

−r
Bind newname to the reference constructed by the command line
arguments.

−c
Store address contents in the form as entered, do not use XDR-encoding.

−x
Convert address to a hexadecimal string without converting it to
XDR-encoding.

−O
The identifier format is FN_ID_ISO_OID_STRING, an ASN.1
dot-separated integer list string.

−U
The identifier format is FN_ID_DCE_UUID, a DCE UUID in string form.

For example:

To add a calendar binding for the user jamal :

fnbind -r user/jamal/service/calendar onc_calendar onc_cal_str
jamal@cygnus

To replace the existing binding of org//service/Sparc-4 with that of
org//service/printer :

fnbind -s org//service/printer org//service/Sparc-4

To copy the reference site/bldg-5/service/printer to
user/ando/service/printer :

fnbind site/bldg-5/service/printer user/ando/service/printer

To bind the reference site/bldg-5/service/printer to
user/ando/service/printer using a symbolic link:

fnbind -L site/bldg-5/service/printer user/ando/service/printer

To bind the name thisens/service/calendar to the address staff@altair ,
when staff@altair is a reference of the type onc_cal and an address of the type
onc_cal_str :

fnbind -r thisens/service/calendar onc_calendar onc_cal_str staff@altair

To bind newname to the reference constructed by its command line address

350 Solaris Naming Administration Guide ♦ May 1999

fnbind -r [-sv] newname [-O|-U] reftype {[-O|-U] addrtype [-c|-x] address}

Removing Bindings
The fnunbind name command is used to remove bindings.

For example: to remove the binding for user/jsmith/service/calendar :

fnunbind user/jsmith/service/calendar

Creating New Contexts
The fncreate command is used to create contexts.

fncreate -t context [-f file] [-o] [-r reference] [-s] [-v] [-D] name

TABLE 20–5 fncreate Command Options

Option Description

−t context
Create context of type context. Context types can be: org , hostname ,
host , username , user , service , fs , site , nsid , and generic .

−f file
Use an input file to list users and hosts for whom to create contexts.

−r reference
Type of reference. The −r reference option can only be used with −t
generic.

name
A composite name

−o
Create only the context identified by name.

−s
Overwrite (supersede) any existing binding. If −s is not used,
fncreate will fail if name is already bound.

−D
Display information about each context and corresponding tables,
directories, and files as it is created.

−v
Verbose. Display information about each context as it is displayed.

For example:

To create a context and subcontexts for the root organization:

FNS Quickstart 351

fncreate -t org org//

To create a context, and subcontexts, for the host deneb :

fncreate -t host host/deneb

To create a context, service and file subcontexts, and then add a calendar binding for
the user sisulu :

fncreate -t user user/sisulu
fnbind -r user/sisulu onc_calendar onc_cal_str sisulu@deneb

To create a site context for the sales organization:

fncreate -t site org/sales/site/

The site context supports a hierarchal namespace, with dot-separated right-to-left
names, which allows sites to be partitioned by their geographical coverage
relationships. For example, to create a site context alameda and a site subcontext
bldg-6.alameda for it:

fncreate -t site org/sales/site/alameda
fncreate -t site org/sales/site/bldg-6.alameda

Creating File Contexts

� The fncreate_fs command creates file contexts for organizations and sites with
the description of the binding entered from the command line.

fncreate_fs [-r] [-v] name [options] [mount]

� The fncreate_fs command creates file contexts for organizations and sites with
the description of the bindings supplied by an input file.

fncreate_fs [-r] [-v] -f file name

TABLE 20–6 fncreate_fs Command Options

Option Description

name
The name of the file context

options
Mount options

352 Solaris Naming Administration Guide ♦ May 1999

TABLE 20–6 fncreate_fs Command Options (continued)

Option Description

mount Mount location

−f file
Input file

−v
Verbose. Displays information about the contexts being created

−r
Replace the bindings in the context name with those specified in the input.

For example:

To create a file system context named data for the sales organization bound to the
/export/data path of an NFS server named server4 .

fncreate_fs org/sales/fs/data server4:/export/data

To create a hierarchy of file system contexts for the sales organization named
buyers and buyers/orders mounted on two different servers:

fncreate_fs org/sales/fs/buyers server2:/export/buyers
fncreate_fs org/sales/fs/buyers/orders server3:/export/orders

To create a file system context named leads for the sales organization bound to a
server and path specified by an input file named input_a :

fncreate_fs -f input_a org/sales/fs/leads

(See the fncreate_fs man page for information on input file format.)

Creating Printer Contexts
The fncreate_printer command creates printer contexts for organizations, users,
hosts and site contexts. The printer context is created under the service context of the
respective composite name.

fncreate_printer [-vs] name printer [prntaddr]

fncreate_printer [-vs] [-f [file]] name

FNS Quickstart 353

TABLE 20–7 fncreate_printer Command Options

Option Description

name The name of the org, host, user, or site of the printer

printer The name of the printer

prntaddr The printer address in the form <addresstype>=<address>

−f file
Use the named file as input for a list of printers to be created. The input
file is in the format of the /etc/printers.conf file. If neither a printer
name nor a −f file is specified, fncreate_printer uses the /etc/
printer.conf file on the machine where fncreate_printer is run as
a default input file.

−s
Replace an existing address with the same address-type.

−v
Verbose. Displays the binding in more detail

For example:

To create printers for the sales organization based on the printers listed in the
/etc/printers.conf file of the machine on which fncreate_printer is run:

fncreate_printer -s org/sales/

Assume that the machine altair is the server for a printer named Sparc-5 . To
create a printer named invoices for the user nguyen that is actually the Sparc-5
printer:

fncreate_printer user/nguyen invoices bsdaddr=altair,Sparc-5

It is also possible to organize printers hierarchically. For example, the
fncreate_printer command can create printer contexts for the printers, color ,
color/inkjet and color/Sparc with the resulting contexts:

org/doc.com/service/printer/color
org/doc.com/service/printer/color/inkjet
org/doc.com/service/printer/color/Sparc

To create the above contexts, you would run:

354 Solaris Naming Administration Guide ♦ May 1999

fncreate_printer org/doc.com color bsdaddr=colorful,color
fncreate_printer org/doc.com color/inkjet bsdaddr=colorjet,inkjet
fncreate_printer org/doc.com color/Sparc bsdaddr=colorprt,Sparc

Destroying Contexts
The fndestroy command is used to destroy empty contexts.

For example, to destroy the service context of the user patel :

fndestroy user/patel/service

Working With Attributes
The fnattr command can be used to add, delete or modify attributes associated
with a name. You can make modifications one at a time, or batch several within the
same command.

� fnattr [−l] name to list attributes for name.

� fnattr name −a−s −U −O attrib values to add an attribute

� fnattr name −m−O −U attrib oldvalue newvalue to modify an attribute

� fnattr name −d −O | −U [values attrib] to destroy an attribute

TABLE 20–8 fnattr Command Options

Option Description

name The composite name

attrib
The identifier of an attribute

values
One or more attribute values

oldvalue
An attribute value to be replaced by a new value

newvalue
The attribute value that replaces an old value

−a
Add an attribute

−d
Destroy an attribute

FNS Quickstart 355

TABLE 20–8 fnattr Command Options (continued)

Option Description

−l
List attributes

−m
Modify an attribute

−s
Replace all old attribute values with the new values for the attribute
specified.

−O
The identifier format is FN_ID_ISO_OID_STRING, an ASN.1
dot-separated integer list string.

−U
The identifier format is FN_ID_DCE_UUID, a DCE UUID in string form.

For example:

To show all of the attributes associated with the user name rosa :

fnattr user/rosa

To display the size attribute associated with the user uri :

fnattr user/uri/ size

For a user named devlin , to add an attribute named shoesize with a value of
small , delete the hatsize attribute, and change the dresssize attribute value
from 12 to 8:

fnattr user/devlin -a shoesize small -d hatsize -m dresssize 12 8

Federating a Global Namespace
You can federate NIS+ or NIS to a global naming service like DNS and X.500.

To federate an NIS+ or NIS namespace under DNS or X.500, you first need to obtain
the root reference for the NIS+ hierarchy or NIS domain.

From the point of view of the global name service, the root reference is known as the
next naming system reference because it refers to the next naming system beneath the
DNS domain or X.500 entry. To federate NIS+ or NIS with a global name service, you
add the root reference information to that global service.

356 Solaris Naming Administration Guide ♦ May 1999

Once you have added the root reference information to the global service, clients
outside of your NIS+ hierarchy or NIS domain can access and perform operations on
the contexts in the NIS+ hierarchy or NIS domain. Foreign NIS+ clients access the
hierarchy as unauthenticated NIS+ clients.

For example:

If NIS+ is federated underneath the DNS domain doc.com, you can now list the root
of the NIS+ enterprise using the command

fnlist .../doc.com/

If NIS+ is federated underneath the X.500 entry /c=us/o=doc , you can list the root
of the NIS+ enterprise using the command:

fnlist .../c=us/o=doc/

Note the mandatory trailing slash in both examples.

Copying and Converting FNS Contexts
The fncopy command can be used to copy or convert an FNS context and attributes
to a new FNS context.

By using the −i and −o options, you can copy FNS contexts based on one underlying
enterprise-level name service to a context based on a different underlying name
service. For example, if you have an FNS installation running on top of NIS, and you
upgrade your NIS service to NIS+, you can use fncopy to create a new context
using NIS+.

Note that:

� If the new FNS context that you are copying an old context to already exists for
the target name service, only new contexts and bindings are copied. The contexts
are not over-written or changed

� fncopy does not follow links, but copies the FNS link bound to a name to the
new context namespace.

FNS Quickstart 357

TABLE 20–9 fncopy Command Options

Option Description

−i oldservice
The old (input) underlying enterprise-level name service. For
example, −i nis specifies that the old service is NIS. Allowed
values are files , nis , nisplus .

−o newservice
The new (output) underlying enterprise-level name. For
example, o nisplus specifies that the new service is NIS+.
Allowed values are files , nis , nisplus.

−f filename
A text file listing FNS contexts to be copied. In the absence of
the −i and −o options, contexts must be identifies using global
names.

oldcontext The name of the context being copied

newcontext The name of the context being created or copied to.

For example, to copy the doc.com printer contexts (and sub-contexts) and bindings
to orgunit/east/doc.com :

fncopy .../doc.com/service/printer .../doc.com/orgunit/east/service/printer

To copy the NIS FNS users’ contexts specified in the file user_list to a NIS+ FNS
users’ context of the orgunit west/doc.com :

fncopy -i nis -o nisplus -f /etc/user_list thisorgunit/user org/doc.com/user

Namespace Browser Programming
Examples
The programming examples in this section shows the usage of XFN APIs to perform
the following operations:

� “Listing Names Bound in a Context” on page 359.

� “Creating a Binding” on page 360.

� “Listing and Working Wtih Object Attributes ” on page 361.

� “Adding, Deleting, and Modifying an Object’s Attributes” on page 363.

358 Solaris Naming Administration Guide ♦ May 1999

� “Searching for Objects in a Context” on page 365.

Listing Names Bound in a Context
The example below shows XFN operations to list a context.

#include <stdio.h>
#include <xfn/xfn.h>
#include <string.h>
#include <stdlib.h>
/*

This routine returns the list of names
bound under the given context (ctx_name).
Examples of ctx_name are "user", "thisorgunit/service",
host/alto/service, user/jsmit/service/calendar, etc.,

*/
typedef struct fns_listing {

char *name;
struct fns_listing *next;

} fns_listing;
fns_listing *
fns_list_names(const char *ctx_name)
{

FN_status_t *status;
FN_ctx_t *initial_context;
FN_composite_name_t *context_name;
FN_namelist_t *name_list;
FN_string_t *name;
unsigned int stat;
fns_listing *head = 0, *current, *prev;
int no_names = 0;
status = fn_status_create();
/* Obtain the initial context */
initial_context = fn_ctx_handle_from_initial(0, status);
if (!fn_status_is_success(status)) {

fprintf(stderr, "Unable to obtain intial context\n");
return (0);

}
context_name = fn_composite_name_from_str((unsigned char *)

ctx_name);
/* FNS call to list names */
name_list = fn_ctx_list_names(initial_context, context_name,

status);
if (!fn_status_is_success(status)) {

fprintf(stderr, "Unable to list names\n");
return (0);

}
/* Obtain the names individually */
while (name = fn_namelist_next(name_list, status)) {

no_names++;
current = (fns_listing *) malloc(sizeof(fns_listing));
current->name = (char *)

malloc(strlen((char *) fn_string_str(name, &stat)) + 1);
strcpy(current->name, (char *) fn_string_str(name, &stat));

(continued)

FNS Quickstart 359

(Continuation)

current->next = 0;
if (head) {

prev->next = current;
prev = current;

} else {
head = current;
prev = current;

}
fn_string_destroy(name);

}
fn_namelist_destroy(name_list);
fn_status_destroy(status);
fn_ctx_destroy(initial_context);
return (head);

Creating a Binding
CODE EXAMPLE 20–1 Creating a Binding

The example below shows how to create a binding.

#include <stdio.h>
#include <xfn/xfn.h>
#include <string.h>
/*

This routine creates a binding with a name provided by "name"
and having a reference type "reference_type" and address type
"address_type".
An example of using the function could be:

fns_create_bindings(
"user/jsmith/service/calendar",
"onc_calendar",
"onc_cal_str",
"jsmith&calserver");

*/
int fns_create_bindings(

char *name,
char *reference_type,
char *address_type,
char *data)

{
int return_status;
FN_composite_name_t *binding_name;
FN_identifier_t ref_id, addr_id;
FN_status_t *status;
FN_ref_t *reference;
FN_ref_addr_t *address;
FN_ctx_t *initial_context;
/* Obtain the initial context */

(continued)

360 Solaris Naming Administration Guide ♦ May 1999

(Continuation)

status = fn_status_create();
initial_context = fn_ctx_handle_from_initial(0, status);
/* Check status for any error messages */
if ((return_status = fn_status_code(status)) != FN_SUCCESS) {

fprintf(stderr, "Unable to obtain the initial context\n");
return (return_status);

}
/* Get the composite name for the printer name */
binding_name = fn_composite_name_from_str((unsigned char *) name);
/* Construct the Address */
addr_id.format = FN_ID_STRING;
addr_id.length = strlen(address_type);
addr_id.contents = (void *) address_type;
address = fn_ref_addr_create(&addr_id,

strlen(data), (const void *) data);
/* Construct the Reference */
ref_id.format = FN_ID_STRING;
ref_id.length = strlen(reference_type);
ref_id.contents = (void *) reference_type;
reference = fn_ref_create(&ref_id);
/* Add Address to the Reference */
fn_ref_append_addr(reference, address);

/* Create a binding */
fn_ctx_bind(initial_context, binding_name, reference, 0, status);
/* Check the error status and return */
return_status = fn_status_code(status);
fn_composite_name_destroy(binding_name);
fn_ref_addr_destroy(address);
fn_ref_destroy(reference);
fn_ctx_destroy(initial_context);
return (return_status);

}

Listing and Working Wtih Object Attributes
The examples below show techniques to list and work with attributes of an object.

Listing an Object’s Attributes
The example below shows how to list the attributes of an object.

#include <stdio.h>
#include <xfn/xfn.h>
/*

This routine prints all the attributes associated
with the named object to the standard output.

(continued)

FNS Quickstart 361

(Continuation)

Examples of using the function:
fns_attr_list("user/jsmith");

fns_attr_list("thisorgunit/service/printer/color");
*/
void fns_attr_list(const char *name)
{

FN_composite_name_t *name_comp;
const FN_identifier_t *identifier;
FN_attribute_t *attribute;
const FN_attrvalue_t *values;
char *id, *val;
FN_multigetlist_t *attrset;
void *ip;
FN_status_t *status;
FN_ctx_t *initial_context;
name_comp = fn_composite_name_from_str((unsigned char *) name);
status = fn_status_create();
/* Obtain the initial context */
initial_context = fn_ctx_handle_from_initial(0, status);
if (!fn_status_is_success(status)) {

fprintf(stderr, "Unable to obtain intial context\n");
return;

}
/* Obtain all the attributes */
attrset = fn_attr_multi_get(initial_context, name_comp, 0, 0,

status);
if (!fn_status_is_success(status)) {

fprintf(stderr, "Unable to obtain attributes\n");
return;

}
/* List all attributes */
while (attribute = fn_multigetlist_next(attrset, status)) {

identifier = fn_attribute_identifier(attribute);
switch(identifier->format) {
case FN_ID_STRING:

id = (char *) malloc(identifier->length + 1);
memcpy(id, identifier->contents, identifier->length);
id[identifier->length] = ’\0’;
printf("Attribute Identifier: %s", id);
free(id);
break;

default:
printf("Attribute of non-string format\n\n");
continue;

}
for (values = fn_attribute_first(attribute, &ip);

values != NULL;
values = fn_attribute_next(attribute, &ip)) {
val = (char *) malloc(values->length + 1);
memcpy(val, values->contents, values->length);
val[values->length] = ’\0’;
printf("Value: %s", val);
free(val);

(continued)

362 Solaris Naming Administration Guide ♦ May 1999

(Continuation)

}
fn_attribute_destroy(attribute);
printf("\n");

}
fn_multigetlist_destroy(attrset);
fn_ctx_destroy(initial_context);
fn_status_destroy(status);
fn_composite_name_destroy(name_comp);

}

Adding, Deleting, and Modifying an Object’s Attributes

The example below shows how to add, delete, or modify an object’s attributes.

#include <stdio.h>
#include <xfn/xfn.h>
/*

This routine modifies an attribute associated
with the named object. The modify operation supported are:

FN_ATTR_OP_ADD
FN_ATTR_OP_ADD_EXCLUSIVE
FN_ATTR_OP_REMOVE
FN_ATTR_OP_ADD_VALUES
FN_ATTR_OP_REMOVE_VALUES
The function assumes the attribute values to be strings.
Examples of using the function:
The following function add an attribute of identifier "realname"
with value "James Smith" to the user object "user/jsmith".

fns_attr_modify(
"user/jsmith",
"realname",
"James Smith",
FN_ATTR_OP_ADD);

The following function removes an attribute of identifier
"location" from the printer object
"thisorgunit/service/printer/color".

fns_attr_modify(
"thisorgunit/service/printer/color",
"location",
NULL,
FN_ATTR_OP_REMOVE);

*/
static const char *attr_id_syntax = "fn_attr_syntax_ascii";
void fns_attr_modify(const char *name,

const char *attr_id,
const char *attr_value,
unsigned int operation)

{
FN_composite_name_t *name_comp;
FN_identifier_t identifier, syntax;

(continued)

FNS Quickstart 363

(Continuation)

FN_attrvalue_t *values;
FN_attribute_t *attribute;
FN_status_t *status;
FN_ctx_t *initial_context;
name_comp = fn_composite_name_from_str((unsigned char *) name);
status = fn_status_create();
/* Obtain the initial context */
initial_context = fn_ctx_handle_from_initial(0, status);
if (!fn_status_is_success(status)) {

fprintf(stderr, "Unable to obtain intial context\n");
return;

}
/* Create the attribute to be added */
/* First, the identifier */
identifier.format = FN_ID_STRING;
identifier.length = strlen(attr_id);
identifier.contents = (void *) strdup(attr_id);
/* Second, the syntax */
syntax.format = FN_ID_STRING;
syntax.length = strlen(attr_id_syntax);
syntax.contents = (void *) strdup(attr_id_syntax);
/* Third, the attribute value */
if (attr_value) {

values = (FN_attrvalue_t *) malloc(sizeof(FN_attrvalue_t));
values->length = strlen(attr_value);
values->contents = (void *) strdup(attr_value);

} else
values = NULL;

/* Fourth, create the attribute */
attribute = fn_attribute_create(&identifier, &syntax);
/*Fifth, add the attribute value */
if (values)

fn_attribute_add(attribute, values, 0);

/* Perform the XFN operation */
fn_attr_modify(initial_context, name_comp, operation, attribute, 0,

status);
if (!fn_status_is_success(status))

fprintf(stderr, "Unable to perform attribute operation\n");
fn_ctx_destroy(initial_context);
fn_status_destroy(status);
fn_composite_name_destroy(name_comp);
fn_attibute_destroy(attribute);
free(identifier.contents);
free(syntax.contents);
if (values) {

free(values->contents);
free(values);

]
]

364 Solaris Naming Administration Guide ♦ May 1999

Searching for Objects in a Context
The example below shows how to search for objects in a context with a specific
attribute identifier and value.

#include <stdio.h>
#include <xfn/xfn.h>
#include <string.h>
#include <stdlib.h>
/*

This routine searchs for objects in a context
which has the specified attribute identifier and value.

*/
typedef struct fns_search_results {

char *name;
struct fns_search_results *next;

} fns_search_results;
static const char *attr_id_syntax = "fn_attr_syntax_ascii";
fns_search_results *
fns_attr_search(const char *name,

const char *attr_id,
const char *attr_value)

{
FN_status_t *status;
FN_ctx_t *initial_context;
FN_composite_name_t *context_name;
FN_searchlist_t *search_list;
FN_string_t *search_name;
FN_attribute_t *attribute;
FN_attrset_t *attrset;
FN_identifier_t identifier, syntax;
FN_attrvalue_t *values;
unsigned stat;
fns_search_results *head = 0, *current, *prev;
int no_names = 0;
context_name = fn_composite_name_from_str((unsigned char *) name);
status = fn_status_create();
initial_context = fn_ctx_handle_from_initial(0, status);
if (!fn_status_is_success(status)) {

fprintf(stderr, "Unable to obtain intial context\n");
return (0);

}
/* Construnct the attrset with attributes to be searched */
/* First, the identifier */
identifier.format = FN_ID_STRING;
identifier.length = strlen(attr_id);
identifier.contents = (void *) strdup(attr_id);
/* Second, the syntax */
syntax.format = FN_ID_STRING;
syntax.length = strlen(attr_id_syntax);
syntax.contents = (void *) strdup(attr_id_syntax);
/* Third, the attribute value */
values = (FN_attrvalue_t *) malloc(sizeof(FN_attrvalue_t));
values->length = strlen(attr_value);
values->contents = (void *) strdup(attr_value);
/* Fourth, create the attribute */
attribute = fn_attribute_create(&identifier, &syntax);

(continued)

FNS Quickstart 365

(Continuation)

/* Fifth, add the attribute value */
fn_attribute_add(attribute, values, 0);
/* Sixth, create attrset, and add the attribute */
attrset = fn_attrset_create();
fn_attrset_add(attrset, attribute, 0);
search_list = prelim_fn_attr_search(initial_context,

context_name, attrset, 0, 0, status);
if (!fn_status_is_success(status)) {

fprintf(stderr, "Unable to list names\n");
return (0);

}
while (search_name = prelim_fn_searchlist_next(search_list,

0, 0, status)) {
no_names++;
current = (fns_search_results *)

malloc(sizeof(fns_search_results));
current->name = (char *)

malloc(strlen((char *) fn_string_str(search_name, &stat)) + 1);
strcpy(current->name, (char *) fn_string_str(search_name, &stat));
current->next = 0;
if (head) {

prev->next = current;
prev = current;

} else {
head = current;
prev = current;

}
fn_string_destroy(search_name);

}
fn_searchlist_destroy(search_list);
fn_status_destroy(status);
fn_ctx_destroy(initial_context);
fn_attrset_destroy(attrset);
fn_attribute_destroy(attribute);
free(identifier.contents);
free(syntax.contents);
free(values->contents);
free(values);
return (head);

}

366 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 21

Federated Naming Overview

This chapter describes the Federated Naming Service (FNS) which is Sun’s
implementation of the X/Open XFN federated naming standard.

� “XFN and FNS” on page 367

� “The XFN Model” on page 369

� “Federated Naming Service” on page 374

� “FNS in the Solaris Environment” on page 376

� “Solaris Enterprise-Level Naming Services” on page 376

� “FNS and NIS+ Naming” on page 377

� “FNS and NIS Naming” on page 377

� “FNS and Files-Based Naming” on page 378

� “Global Naming Services” on page 378

� “FNS and Applications” on page 380

� “FNS File Naming” on page 380

� “FNS Printer Naming” on page 380

� “FNS Application Support” on page 380

� “Administering FNS” on page 381

� “Troubleshooting and Error Messages” on page 382

XFN and FNS
Different name services are often embedded in different applications and services in
a computing environment. Working with different name services presents significant

367

difficulties to the application developer. Most applications are designed to use a
single name service and have very limited access to objects in a distributed
computing environment. Because different applications use different name services
they expect names to be composed differently. They often use different names for
what the user considers very similar objects. For example, you might be able to send
mail to your friend Johanna using her name johanna@admin.doc.com , but be
required to use another name, jsmith@altair , to access her calendar.

FNS, Sun’s implementation of the XFN standard, allows you to name objects in a
uniform way, yet still provide the functionality that applications and developers need.

� XFN is X/Open Federated Naming. XFN is a standard actively supported by
organizations such as SunSoft, Inc., IBM, Hewlett-Packard, DEC, Siemens, and
OSF. FNS, the Solaris 2.6 release implementation of XFN, is compliant with the X/
Open Preliminary Specification for Federated Naming (July 1994). Applications that use
FNS are portable across platforms because the interface exported by FNS is XFN, a
public, open interface endorsed by other vendors and X/Open. The X/Open Co.
Ltd. is an international standards organization committed to defining computing
standards that are endorsed and adhered to by the major computer vendors.

� FNS provides a method for federating multiple name services under a single,
simple uniform interface for the basic naming operations. The service supports
resolution of composite names—names that span multiple name systems—
through the naming interface. Each member of a federation has autonomy in its
choice of naming conventions, administrative interfaces, and its particular set of
operations other than name resolution.

In the Solaris environment, the FNS implementation consists of a set of
enterprise-level name services (see “Solaris Enterprise-Level Naming Services” on
page 376) with specific policies and conventions for naming organizations, users,
hosts, sites, and services as well as support for global name services (see “Global
Naming Services” on page 378) such as DNS and X.500.

FNS is useful for the following reasons:

� A single uniform naming interface is provided to clients for accessing different
name services. As a consequence, the addition of new name services does not
require changes to applications or to existing member name services.

� Names can be composed in a uniform way, and the resulting composite names
can have any number of components.

� Coherent naming is encouraged through the use of shared contexts and shared
names.

Note - In this manual it is important to distinguish between XFN and FNS. The FNS
policies include some extensions to XFN policies, and these are explicitly defined
with notes. Objects belonging to the XFN programming interface are designated as
XFN objects to avoid confusion with other programming interfaces.

368 Solaris Naming Administration Guide ♦ May 1999

The XFN Model
This section describes the XFN naming model from several perspectives.

XFN Architectural Model
The primary services provided by a federated naming system are mapping a
composite name to a reference and providing access to attributes associated with a
named object. This section defines the elements of the XFN naming model.

Atomic Names
The smallest, indivisible component of a name is called an atomic name. For example,
the machine name nismaster or the user name chou . An atomic name may have
one or more attributes, or no attributes at all (see “Attributes” on page 370).

References
A reference is the information on how to reach an object. A reference contains a list
of addresses. An address identifies a communication endpoint (an object). For
example, the address of a machine such as nismaster.doc.com , or a user’s email
address such as chou@doc.com .

A reference might contain multiple addresses that identify multiple communication
endpoints for a single conceptual object or service. For example, a list of addresses
might be required because the object is distributed or because the object can be
accessed through more than one communication mechanism.

Note - XFN cannot guarantee specific properties of addresses such as their stability,
validity, or reachability. A client might be able to look up a name but not be able to
use the returned reference because the client might not have support for any of the
necessary communication mechanisms or might lack the necessary network
connectivity to reach the address. Further, the address might be invalid from that
origin or stale; these issues are the province of the convention between the name’s
binder, the clients, and the service provider specified in the address.

Contexts
A context is a set of atomic names bound to references, as shown in Figure 21–1.
Every context has an associated naming convention. A context provides a lookup

Federated Naming Overview 369

(resolution) operation, which returns the reference, and may provide operations such
as binding names, unbinding names, and listing bound names. Contexts are at the
heart of the lookup and binding operations.

Name A

A Context

Ref

Name B Ref

Name C Ref

Attr

Attr

Attr

Attr

Attr

Attr

Figure 21–1 An XFN ‘Context’

Attributes
Attributes may be applied to named objects. Attributes are optional. A named object
can have no attributes, one attributes, or multiple attributes.

Each attribute has a unique attribute identifier, an attribute syntax, and a set of zero
or more distinct attribute values. Attributes are indicated by the dotted lines in
Figure 21–1 above.

XFN defines the base attribute interface for examining and modifying the values of
attributes associated with existing named objects. These objects can be contexts or
any other types of objects. Associated with a context are syntax attributes that
describe how the context parses compound names.

The extended attribute interface contains operations that search for specific attributes
and that create objects and their associated attributes.

Compound Names
A compound name is a sequence of one or more atomic names. An atomic name in
one context can be bound to a reference to another context of the same type, called a
subcontext. Objects in the subcontext are named using a compound name.
Compound names are resolved by looking up each successive atomic name in each
successive context.

A familiar analogy for UNIX users is the file naming model, where directories are
analogous to contexts, and path names serve as compound names. Furthermore,
contexts can be arranged in a “tree” structure, just as directories are, with the
compound names forming a hierarchical namespace.

For example:

� UNIX: usr/local/bin . UNIX atomic names are ordered from left to right and
are delimited by slash (/) characters. The name usr is bound to a context in which
local is bound. The name local is bound to a context in which bin is bound.

370 Solaris Naming Administration Guide ♦ May 1999

� DNS: sales.doc.com . DNS atomic names are ordered from right to left, and are
delimited by dot (.) characters. The domain name com is bound to a context in
which doc is bound. doc is bound to a context in which sales is bound.

� X.500: c=us/o=doc/ou=sales . An X.500 atomic name comprises an attribute
type and an attribute value. Atomic names are known as relative distinguished
names in X.500. In this string representation, X.500 atomic names are ordered from
left to right, and are delimited by slash (/) characters. An attribute type is
separated from an attribute value by an equal sign (=) character. Abbreviations are
defined for commonly used attribute types (for example, “c” represents country
name). The country name US is bound to a context in which doc is bound. The
organization name doc is bound to a context in which the organizational unit
name sales is bound.

Composite Names
A composite name is a name that spans multiple naming systems. Each component
is a name from the namespace of a single naming system. Composite name
resolution is the process of resolving a name that spans multiple naming systems.

Components are separated by slashes (/) and ordered from left to right, according to
XFN composite name syntax. For example, the composite name

sales.doc.com/usr/local/bin

has two components, a DNS name (sales.doc.com) and a UNIX path name
(usr/local/bin).

FNS Namespaces
Atomic names and reference addresses may also be resolved relative to one or more
namespaces. By default, FNS provides six namespaces: org (for organization), site ,
host , user , service , and fs (for files).

FNS policies are used to determine how names associated with namespaces relate to
each other. For example; a user is named sergei in the user namespace and is
identified as /user/sergei . A calendar application is named in the service
namespace and is identified as /service/calendar . With this system, you can
then identify Sergei’s calendar service as: /user/sergei/service/calendar .
(See “Introduction to FNS and XFN Policies” on page 384 for more information on
namespaces and how they are used.)

If an application is expecting you to type a user name, the application can include
the namespace identifier user/ in front of names that you enter. If the application
needs to name one of the user’s services, such as the user’s default fax machine, it
can append the service namespace and the name of the service (/service/fax),
to the input supplied. Hence, a fax tool might take as input the user name jacques
and then compose the full name user/jacques/service/fax for the default fax

Federated Naming Overview 371

of the user jacques . Similarly, to access a person’s calendar, you just need to type
the person’s user name. The application takes the input, raj , and uses it to construct
the composite name, in this case, user/raj/service/calendar .

XFN Links
An XFN link is a special form of a reference that is bound to an atomic name in a
context. Instead of an address, a link contains a composite name. Many naming
systems support a native notion of link that can be used within the naming system
itself. XFN does not specify whether there is any relationship between such native
links and XFN links.

Initial Context
Every XFN name is interpreted relative to some context, and every XFN naming
operation is performed on a context object. The initial context object provides a
starting point for the resolution of composite names. The XFN interface provides a
function that allows the client to obtain an initial context.

The policies described in Chapter 22, specify a set of names that the client can expect
to find in this context and the semantics of their bindings. This provides the initial
pathway to other XFN contexts.

User’s View
Users experience federated naming through applications. Typically, the user does not
need to compose or know the full composite name of objects because the application
takes care of constructing the composite names. This allows the user to interact with
XFN-aware applications in a simple, intuitive, and consistent manner.

File System View
Users and applications also experience federated naming through the file system.
The initial context is located under /xfn in the root directory. For example, user
ingrid ’s to_do file has the XFN name, xfn/user/ingrid/fs/to_do .

To read this file, you could type:

% cat /xfn/user/ingrid/fs/to_do

Applications access the files under /xfn just as they do any other files. Applications
do not need to be modified in any way, nor do they need to use the XFN API.

372 Solaris Naming Administration Guide ♦ May 1999

Application View
The way that client applications interact with XFN to access different naming
systems is illustrated in a series of figures. Figure 21–2 shows an application that
uses the XFN API and library.

Client Application

XFN API

XFN Client
Library

Figure 21–2 Client Application Interaction With XFN

Figure 21–3 shows the details beneath the API. A name service that is federated is
accessed through the XFN client library and a context shared object module. This
module translates the XFN calls into name service–specific calls.

Client Application

XFN API

XFN
Client Library

Context
Implementation

Name Service Interface

Library

Protocol

Server

Figure 21–3 Details Beneath XFN API

Federated Naming Overview 373

API Usage Model
Many clients of the XFN interface are only interested in lookups. Their usage of the
interface amounts to:

� Obtaining the initial context

� Looking up one or more names relative to the initial context

Once the client obtains a desired reference from the lookup operation, it constructs a
client-side representation of the object from the reference.

Federated Naming Service
Within the Solaris environment, name services are integrated into other services such
as the file system, the network information service, the mail system, and the calendar
service. For example, the file system includes a naming system for files and
directories; NIS+ service combines a naming system with a specialized information
service.

Without FNS, users of the Solaris environment must use different, inconsistent names
to refer to objects. For example: you might use the name jsmith@admin to send
mail to Joan, the name jsmith@altair to access her calendar, and the name
/home/jsmith/.cshrc to reach a file in her home directory. This disparity makes
it hard for users to formulate names and hard for applications to automatically
generate names on behalf of users. FNS policies define a coherent way for naming
these objects.

FNS and Application Development
Applications also need naming services and applications in the Solaris environment
must often deal with a diversity of name service interfaces. An application might
also be exposed to a variety of often incompatible naming systems external to the
Solaris environment. Local- and wide-area networks connect a heterogeneous array
of hardware and operating systems, increasing the variety of potential interfaces. Not
only do these naming interfaces differ widely, but the essential naming operations
are often obscure.

FNS simplifies these problems in two ways:

� It provides a single standard interface to the basic naming functions that
developers can use for their applications.

� It permits changes or additions to network name services without changing
existing applications.

374 Solaris Naming Administration Guide ♦ May 1999

FNS and Composite Names
Some applications use composite names to access objects in the Solaris environment.
The commands mail and rcp are examples of such applications.

rcp uses composite names such as sirius:/usr/jsmith/memo , which has two
components: the host name sirius and the file name (path) /usr/jsmith/memo .
The mail program uses composite names such as jsmith@altair , which has two
components: the user name jsmith and the host name altair .

Each application defines its own composition rule for names, parses the composite
names, and resolves composite names. Composition rules often differ from one
application to another.

Without FNS, the user must remember which applications permit composite naming
and which do not. For example, the composite name sirius:/tmp/saleslist is
accepted by the rcp command, but not by the cp command.

Without FNS, the user must also remember the different composition rules used
among different applications. Applications that support composite names on their
own can use only a small and specific set of naming systems, and must be changed
whenever a new type of naming system is added.

Incorporating a uniform policy for composite naming into the computing platform
permits any application to support composite names in a uniform way. The
application passes one name to one interface.

FNS Policy Principles
The following principles were used to arrive at FNS policies:

� When it is natural to name other objects relative to a certain object, that object should
provide a naming context. For example, because it is natural to want to name
various things relative to a user, a user object should be a naming context.

� It should be possible to compose names using common components. This reduces the
number of names that users need to remember and makes it easier for applications
and users to construct names based on their knowledge of common components
and how they can be logically composed.

� Names should be intuitive and self-evident. For example, the FNS name
/user/wong/service/calendar clearly identifies the calendar service used by
Wong. In contrast, the calendar name wong@denebnames the host (deneb) where
the calendar service for Wong is being provided. But to other users, there is no
obvious connection between the user’s calendar and a host. The host name is
extraneous and difficult to discover and remember.

� Never use two contexts when one context will do. In the example above, we would like
to name a mail address, a calendar, and a file’s directory relative to the user wong.
Sharing contexts and their names make naming more coherent and simplifies
administration.

Federated Naming Overview 375

FNS in the Solaris Environment
In the Solaris environment, the FNS implementation currently consists of name
services implemented on top of:

� Enterprise-level name services such NIS+, NIS, and/or local files. (See “Solaris
Enterprise-Level Naming Services” on page 376, below.)

� File naming, printer naming, and support for other applications. (see Chapter 25.)

� Global-level naming systems using DNS and X.500/LDAP. (See Chapter 26.)

FNS will become increasingly more visible to Solaris users as more applications and
systems use FNS.

Solaris Enterprise-Level Naming
Services
An enterprise-level naming service identifies (names) machines (hosts), users and files
within an enterprise-level network. FNS also allows naming of organizational units,
geographic sites, and application services. An “enterprise-level” network can be a
single Local Area Network (LAN) communicating over cables, infra-red beams, or
radio broadcast; or a cluster of two or more LANs linked together by cable or direct
phone connections. Within an enterprise-level network, every machine is able to
communicate with every other machine without reference to a global naming service
such as DNS or X.500/LDAP.

FNS currently supports three enterprise-level naming services:

� NIS+. See “FNS and NIS+ Naming” on page 377, below, “How FNS Policies Relate
to NIS+” on page 407, and “Advanced FNS and NIS+ Issues” on page 423.

� NIS. See “FNS and NIS Naming” on page 377, “How FNS Policies Relate to NIS”
on page 409, and “Advanced FNS and NIS Issues” on page 425.

� Files. See “FNS and Files-Based Naming” on page 378, “How FNS Policies Relate
to Files-Based Naming” on page 410, and “Advanced FNS and File-Based Naming
Issues ” on page 428.

See Chapter 23, for administration information regarding FNS and enterprise-level
naming services.

376 Solaris Naming Administration Guide ♦ May 1999

FNS and NIS+ Naming
If you are not familiar with NIS+ and its terminology, refer to Part 1 and Glossary of
this guide. You will find it helpful to be familiar with the structure of a typical NIS+
environment.

NIS+ is the preferred enterprise-wide information service in the Solaris environment.
Both NIS and local files can be used along with NIS+. NIS+ allows an enterprise to
be divided into hierarchical organizational levels composed of domains and
subdomains.

FNS organization units correspond to NIS+ domains and subdomains. There is one
orgunit context for each domain and subdomain.

FNS federates NIS+, NIS, and local files to support naming policies in the Solaris
environment. To do this, FNS provides the XFN interface for performing naming
operations on organization , site , user , and host objects. It implements these
operations using the appropriate programming interface for accessing files,
directories, and tables.

Under NIS+, FNS context and attribute data is stored in NIS+ type tables. These
tables are stored in NIS+ type directory objects named ctx_dir . There is an
ctx_dir directory object for each NIS+ domain and subdomain, residing at the
same level as the domain’s groups_dir and org_dir directory objects. Thus, the
directory object ctx_dir.sales.doc.com. contains FNS tables which store FNS
context and attribute data for the sales.doc.com domain.

Under NIS+, you use FNS and NIS+ commands to work with the information in FNS
tables. Do not edit these tables directly or manipulate them with UNIX commands.

FNS and NIS Naming
NIS is an enterprise-wide information service in the Solaris environment. Local files
can be used along with NIS. Under NIS, an enterprise is organized as a single NIS
domain.

Each enterprise is a single NIS domain. There is one FNS organizational unit which
corresponds to the single NIS domain.

FNS federates NIS and local files to support naming policies in the Solaris
environment. To do this, FNS provides the XFN interface for performing naming
operations on organization , site , user , and host maps. It implements these
operations using the appropriate programming interface for accessing files,
directories.

Under NIS, FNS context and attribute data are stored in NIS maps. These maps are
stored in a /var/yp/ domainname directory on a NIS server. Under NIS, the super
user can use FNS commands to work with the information in FNS maps.

Federated Naming Overview 377

NIS Clients Can Update Contexts With FNS if SKI is Running
If certain conditions are met, any NIS client (machine, process, or user) can use FNS
commands such as fncreate_fs or fncreate_printer to update the client’s
own contexts. This allows NIS clients to use FNS commands to update applications
such as Printer Administrator, CDE Calendar Manager, Admin Tool and others.

For non-super-users to update their own contexts with FNS commands, the
following conditions must be met:

� Secure Key_management Infrastructure (SKI) must be available on the NIS master
server.

� The fnsypd daemon must be running on the NIS master server. This daemon
must be started by someone with super user privileges.

� A client user or machine is only allowed to update its own context.

� The client must be authorized to perform the requested update.

FNS and Files-Based Naming
Files refers to the naming files normally found in a machine’s /etc directory. These
machine-based files contain UNIX user and password information, host information,
mail aliases, and so forth. They also support Solaris-specific data such as the
automount maps.

FNS federates local files to support naming policies in the Solaris environment. To do
this, FNS provides the XFN interface for performing naming operations on
organization , site , user , and host files. It implements these operations using
the appropriate programming interface for accessing files, directories.

Under a files-based naming system, FNS context and attribute data is stored in files.
These files are stored in a /var/fn directory exported from an NFS file server.

Under a files-based naming system, you use FNS commands to work with the
information in FNS files.

Global Naming Services
A global naming service identifies (names) those enterprise-level networks around
the world that are linked together via phone, satellite, or other communication
systems. This world-wide collection of linked networks is known as the “Internet.”
In addition to naming networks, a global naming service also identifies individual
machines and users within a given network.

FNS currently supports two global naming services:

378 Solaris Naming Administration Guide ♦ May 1999

� DNS. See “FNS and DNS” on page 379, below and “Federating Under DNS” on
page 458.

� X.500/LDAP. See “FNS and X.500” on page 379, below and “Federating Under
X.500/LDAP” on page 459.

Note - You can only federate a global naming service if your enterprise-level name
service is NIS+ or NIS. If you are using a files-based name service for your
enterprise, you cannot federate either DNS or X.500/LDAP.

See Chapter 26, for administration information regarding FNS and enterprise-level
naming services.

FNS and DNS
The Internet Domain Name System (DNS) is a hierarchical collection of name servers
that provide the world Internet with host and domain name resolution. FNS uses
DNS to name enterprise objects globally.

A domain name is the name DNS uses to identify an enterprise-level network (LAN
or WAN). Networks using NIS+ permit creation of subdomains within the parent
domain, and DNS can identify such subdomains.

Names can be constructed for any enterprise that is accessible on the Internet;
consequently, names can also be constructed for objects exported by these enterprises.
For more information about FNS and DNS, see “Federating Under DNS” on page 458.

FNS and X.500
X.500 is a global directory service. Its components cooperate to manage information
about objects in a worldwide scope. Such objects include countries, organizations,
people, and machines. FNS federates X.500 to enable global access to enterprise name
services. You can choose to use one of two APIs to access the X.500 global directory
service:

� XDS/XOM API

� LDAP (Lightweight Directory Access Protocol) API.

See “Federating Under X.500/LDAP” on page 459 for information on federating
X.500.

Federated Naming Overview 379

FNS and Applications
FNS supports:

� Solaris NFS file service (see “FNS File Naming” on page 380, below).

� Printer naming (see “FNS Printer Naming” on page 380).

� Other applications (see “FNS Application Support” on page 380).

FNS File Naming
FNS-based file naming integrates FNS naming into the Solaris file service. FNS-based
file naming enables files to be named relative to users, hosts, sites, and organizations,
using the FNS policies shared with other non-file applications.

FNS-based file naming gives clients a common view of the global and
enterprise-wide file namespaces. Solaris applications that access the file system will,
without modification, have access to the file namespaces supported by FNS.

FNS Printer Naming
FNS-based printer naming provides the basic naming support for the unbundled
SunSoft Print Client (SSPC). FNS-based printer naming enables printers to be named
relative to users, hosts, sites, and organizations, using the FNS policies shared with
other non-printing-related applications.

FNS-based printer naming gives clients a common view of the global and
enterprise-wide printer namespaces and allows centralized administration of the
printer namespaces.

FNS Application Support
Applications that are aware of FNS can expect the namespace to be arranged
according to the FNS policies, and applications that bind names in the FNS
namespace are expected to follow these policies.

Applications use FNS three ways:

� Applications can be direct clients of the FNS interface and policies. Application-level
utilities such as the file system, the printing service, and the desktop tools
(calendar manager, file manager) are examples of clients that use the FNS interface
directly.

380 Solaris Naming Administration Guide ♦ May 1999

� Applications can use FNS through existing interfaces. A significant proportion of FNS
use is through existing application programming interfaces. For example, consider
a UNIX application that obtains a file name that it later supplies to the UNIX
open() function. With FNS support for resolution of file names, the application
need not be aware that the strings it deals with are composite names rather than
the traditional local path names. Many applications can thereby support the use of
composite names without modification.

� Systems can export the FNS interface. Naming systems, such as DNS and X.500, and
naming systems embedded in other services, like the file system and printing
service, are examples of naming systems that export the FNS interface.

Administering FNS
FNS System administration varies according to the underlying naming service:

� NIS+. Under NIS+, FNS system administration tasks can only be performed by
those with authorization to do so. The usual method of granting system
administration privileges is to create an NIS+ group and assign that group the
necessary privileges for that domain. Any member of the group can then perform
system administration functions.

� NIS. Under NIS, FNS administration tasks must be performed by root on the NIS
master server.

� Files. Under a files-based naming system, FNS administration tasks must be
performed by someone with root access to the /var/fn directory.

The ability of users to make changes to their own user sub-contexts varies according
to the underlying naming service:

� NIS+. Under NIS+, a user’s context (and associated sub-contexts) are owned by
them. When logged in as an NIS+ principle, users who have the appropriate
credentials and privileges can make changes to their own context using the
fncreate , fnbind , fnunbind , and similar commands.

� NIS. Under NIS, users cannot make any changes to any FNS data. Only those with
root access on the NIS master server can change FNS data.

� Files. Under a files-based naming system, users own their own contexts. Standard
UNIX access controls apply to FNS files.

Federated Naming Overview 381

Troubleshooting and Error Messages
For troubleshooting common FNS problems and solving them, see “FNS Problems
and Solutions” on page 561. FNS error messages are included in Appendix B.

382 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 22

FNS Policies

This chapter describes FNS policies.

� “Introduction to FNS and XFN Policies” on page 384

� “Policies for the Enterprise Namespace” on page 385

� “Enterprise Namespace Identifiers” on page 386

� “Default FNS Enterprise Namespaces” on page 385

� “Organizational Unit Namespace” on page 387

� “Site Namespace” on page 389

� “Host Namespace” on page 389

� “User Namespace” on page 390

� “File Namespace” on page 390

� “Service Namespace” on page 390

� “FNS Reserved Names” on page 391

� “Composite Name Examples” on page 392

� “Structure of the Enterprise Namespace” on page 393

� “Enterprise Root” on page 396

� “Initial Context Bindings for Naming Within the Enterprise” on page 401

� “FNS and Enterprise Level Naming” on page 406

� “Target Client Applications of FNS Policies” on page 410

� “FNS File System Namespace” on page 413

� “The FNS Printer Namespace” on page 415

� “Policies for the Global Namespace” on page 415

� “Federating DNS” on page 416

383

� “Federating X.500/LDAP” on page 417

Introduction to FNS and XFN Policies
XFN defines policies for naming objects in the federated namespace. The goals of
these policies are

� To allow easy and uniform composition of names

� To promote coherence in naming across applications and services

� To provide a simple, yet sufficiently rich, set of policies so that applications need
not invent and implement ad hoc policies for specific environments

� To enhance an application’s portability

� To promote cross-platform interoperability in heterogeneous computing
environments

What FNS Policies Specify
FNS policies contain all the XFN policies plus extensions for the Solaris environment.

Computing environments now offer worldwide scope and a large range of services.
Users expect to have access to services at every level of the computing environment.
FNS policies provide a common framework for the three levels of services: global,
enterprise, and application.

FNS provides to applications a set of policies on how name services are arranged
and used:

� Policies that specify how to federate the enterprise namespace so that it is
accessible in the global namespace.

� Policies that specify the names and bindings present in the initial context of every
process.

� Name service policies for enterprise objects: organizations, hosts, users, sites, files,
and services.

� Policies that define the relationships among the organization, host, user, site, files,
and service enterprise objects.

� Policies that specify the syntax of names used to refer to those enterprise objects.

What FNS Policies Do Not Specify
The FNS policies do not specify:

384 Solaris Naming Administration Guide ♦ May 1999

� The actual names used within name services.

� Naming within applications. Application-level naming is left to individual
applications or groups of related applications.

� The attributes to use once the object has been named.

Policies for the Enterprise Namespace
FNS policies specify the types and arrangement of namespaces within an enterprise
and how such namespaces can be used by applications. For example, which
namespaces can be associated with which other namespaces. The FNS policies
described here include some extensions to XFN policy. These are explicitly defined
with notes.

Default FNS Enterprise Namespaces
The FNS enterprise policies deal with the arrangement of enterprise objects within
the namespace. Each enterprise objects has its own namespace.

By default, there are seven FNS enterprise objects and namespaces:

� Organization (orgunit). Entities such as departments, centers, and divisions. Sites,
hosts, users, and services can be named relative to an organization. The XFN term
for organization is organizational unit. When used in an initial context the identifier
org can be used as an alias for orgunit .

� Site (site). Physical locations, such as buildings, machines in buildings, and
conference rooms within buildings. Sites can have files and services associated
with them.

� Host (host). Machines. Hosts can have files and services associated with them.

� User (user). Human users. Users can have files and services associated with them.

� File (fs). Files within a file system.

� Service (service). Services such as printers, faxes, mail, and electronic calendars.

� Printer (service/printer). The printer namespace is subordinate to the service
namespace.

Figure 22–1 shows how these enterprise namespaces are arranged.

FNS Policies 385

org

service

application
specific

application
specific

application
specific

application
specific

user

file

file service

site

service

file

host

file

service

Figure 22–1 What FNS Policies Arrange

Some of these namespaces, such as users and hosts, can appear more than once in a
federated namespace.

The policies that apply to these namespaces are summarized in Table 22–2.

Enterprise Namespace Identifiers
Enterprise namespaces are referred to by their atomic names in the federated
enterprise namespace.

XFN uses leading underscore (“_”) characters to indicate an enterprise namespace
identifier. For example, _site . FNS also supports the use of these identifiers without
the leading underscore (“_”) character. These names without the underscore are
extensions to the XFN policies. The site and printer contexts are also extensions
to the XFN policies. These atomic names are listed in Table 22–1.

TABLE 22–1 Enterprise Namespace Identifiers in the Enterprise

Namespace XFN Identifiers FNS Identifiers Resolves to

Organization _orgunit orgunit or org Context for naming organizational units

Site _site site Context for naming sites

Host _host host Context for naming hosts

User _user user Context for naming users

386 Solaris Naming Administration Guide ♦ May 1999

TABLE 22–1 Enterprise Namespace Identifiers in the Enterprise (continued)

Namespace XFN Identifiers FNS Identifiers Resolves to

File system _fs fs Context for naming files

Service _service service Context for naming services

Printer printer Context for naming printers, (subordinate
to service namespace)

Note - In XFN terminology, the names with the leading underscore are the canonical
namespace identifiers. The names without the underscore are namespace identifies
that have been customized for the Solaris environment. These customized namespace
identifiers, with the addition of printer , might not be recognized in non-Solaris
environments. The canonical namespace identifiers are always recognized and so are
portable to other environments.

Component Separators
The XFN component separator (/) delimits namespace identifiers. For example,
composing the namespace identifier orgunit with the organizational unit name
west.sales gives the composite name, orgunit/west.sales .

Default FNS Namespaces
There are seven namespaces supplied with FNS:

� Organization. (See “Organizational Unit Namespace” on page 387)

� Site. (See “Site Namespace” on page 389)

� Host. (See “Host Namespace” on page 389)

� User. (See “User Namespace” on page 390)

� File. (See “File Namespace” on page 390)

� Service. (See “Service Namespace” on page 390)

� Printer. (See “Service Namespace” on page 390)

Organizational Unit Namespace
The organizational unit namespace provides a hierarchical namespace for naming
subunits of an enterprise. Each organizational unit name is bound to an organizational

FNS Policies 387

unit context that represents the organizational unit. Organization unit names are
identified by the prefixes org/ , orgunit/ , or _orgunit/ . (The shorthand alias
org/ is only used in the initial context, never in the middle of a compound name.
See “Initial Context Bindings for Naming Within the Enterprise” on page 401 and
“Composite Name Examples” on page 392.)

NIS+ Environment
In an NIS+ environment, organizational units correspond to NIS+ domains and
subdomains.

Under NIS+, organization units must map to domains and subdomains. You must
have an organizational unit for each NIS+ domain and subdomain. You cannot have
“logical” organization units within a domain or subdomain. In other words, you
cannot divide an NIS+ domain or subdomain into smaller organization units. Thus,
if you have a NIS+ domain doc.com. and two subdomains sales.doc.com. and
manf.doc.com. , you must have three FNS organizational units corresponding to
those three domains.

Organizational units are named using dot-separated right-to-left compound names,
where each atomic element names an organizational unit within a larger unit. For
example, the name org/sales.doc.com. names an organizational unit sales
within a larger unit named doc.com. In this example, sales is an NIS+ subdomain
of doc.com.

Organizational unit names can be either fully qualified NIS+ domain names or
relatively named NIS+ names. Fully qualified names have a terminal dot; relative
names do not. Thus, if a terminal dot is present in the organization name, the name
is treated as a fully qualified NIS+ domain name. If there is no terminal dot, the
organization name is resolved relative to the top of the organizational hierarchy. For
example, orgunit/west.sales.doc.com. is a fully qualified name identifying
the west organization unit, and _orgunit/west.sales is a relatively qualified
name identifying the same subdomain.

NIS Environment
In a NIS environment there is only one organization unit per enterprise which
corresponds to the NIS domain. This orgunit is named orgunit/ domainname
where domainname is the name of the NIS domain. For example, if the NIS domain
name is doc.com , the organizational unit is org/doc.com .

In an NIS environment, you can use an empty string as a shorthand for the
organizational unit. Thus, org// is equivalent to org/ domainname.

388 Solaris Naming Administration Guide ♦ May 1999

Files-Based Environment
There is only one FNS organization unit and no subunits when your primary
enterprise-level name service is files-based. The only permitted organization unit
under files-based naming is org// .

Site Namespace
The site namespace provides a geographic namespace for naming objects that are
naturally identified with their physical locations. These objects can be, for example,
buildings on a campus, machines and printers on a floor, conference rooms in a
building and their schedules, and users in contiguous offices. Site names are
identified by the prefixes site/ or _site/ .

In the Solaris environment, sites are named using compound names, where each
atomic part names a site within a larger site. The syntax of site names is
dot-separated right-to-left, with components arranged from the most general to the
most specific location description. For example, _site/pine.bldg5 names the Pine
conference room in building 5, while site/bldg7.alameda identifies building 7 of
the Alameda location of some enterprise.

Host Namespace
The host namespace provides a namespace for naming computers. Host names are
identified by the prefixes host/ or _host/ . For example, host/deneb identifies a
machine named deneb .

Hosts are named in hostname contexts. The host context has a flat namespace and
contains bindings of host names to host contexts. A host context allows you to name
objects relative to a machine, such as files and printers found at that host.

In the Solaris environment, host names correspond to Solaris host names. Alias
names for a single machine share the same context. For example, if the name
mail_server is an alias for the machines deneb and altair , both deneb and
altair will share the contexts created for mail_server .

Network resources should only be named relative to hosts as appropriate. In most
cases, it is more intuitive to name resources relative to entities such as organizations,
users, or sites. Dependence on host names forces the user to remember information
that is often obscure and sometimes not very stable. For example, a user’s files might
move from one host to another because of hardware changes, file space usage,
network reconfigurations, and so on. And users often share the same file server,
which might lead to confusion if files were named relative to hosts. Yet if the files
were named relative to the user, such changes do not affect how the files are named.

There might be a few cases in which the use of host names is appropriate. For
example, if a resource is available only on a particular machine and is tied to the
existence of that machine, and there is no other logical way to name the resource

FNS Policies 389

relative to other entities, then it might make sense to name the resource relative to
the host. Or, in the case of a file system, if the files are being shared by many users it
might make sense to name them relative to the machine they are stored on.

User Namespace
The user namespace provides a namespace for naming human users in a computing
environment. User names are identified by the prefixes user/ or _user/ .

Users are named in user contexts. The user context has a single-level namespace and
contains bindings of user names to user contexts. A user context allows you to name
objects relative to a user, such as files, services, or resources associated with the user.

In the Solaris environment, user names correspond to Solaris login IDs. For example,
_user/inga identifies a user whose login ID is inga .

File Namespace
A file namespace (or file system) provides a namespace for naming files. File names
are identified by the prefixes fs/ or _fs/ . For example the name fs/etc/motd
identifies the file motd which is stored in the /etc directory.

The file namespace is described in more detail in “FNS File Naming” on page 380.
and file contexts are discussed in “File Contexts Administration” on page 449.

Service Namespace
The service namespace provides a namespace for services used by or associated with
objects within an enterprise. Examples of such services are electronic calendars, faxes,
mail, and printing. Service names are identified by the prefixes service/ or
_service/ .

In the Solaris environment, the service namespace is hierarchical. Service names are
slash-separated (/) left-to-right compound names. An application that uses the
service namespace can make use of this hierarchical property to reserve a subtree for
that application. For example, the printer service reserves the subtree printer in the
service namespace.

FNS does not specify how service names or reference types are chosen. These are
determined by service providers that share the service namespace. For example, the
calendar service uses the name _service/calendar in the service context to name
the calendar service and what is bound to the name calendar is determined by the
calendar service.

390 Solaris Naming Administration Guide ♦ May 1999

Service Name and Reference Registration
SunSoft, Inc., maintains a registry of the names bound in the first level of the
service namespace. To register a name, send an email request to
fns-register@sun.com , or write to:

FNS Registration Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303

Please include a brief description of the intended use of the name and a description
of the format of the reference that can be bound to that name.

Printer Namespace
The printer namespace provides a namespace for naming printers. The printer
namespace is associated with (subordinate to) the service namespace. In other words,
printer service and the printer namespace is one of the services in the service
namespace. Printer names are identified by the prefixes service/printer or
_service/printer . For example, service/printer/laser1 identifies the
printer named laser1 .

Significance of Trailing Slash
The trailing / names objects in the next naming system. You need it whenever you
are going from one naming system to another.

For example, in the name, org/east.sales/service/printer the slash between
org and east.sales is a component delimiter as described above and the slash
that trails after the last element in the organization name (sales/) separates the
service namespace from the organizational unit namespace. Thus,
org/west.sales/service/printer names the printer service of the
west.sales organization unit.

FNS Reserved Names
FNS reserves for its own use all the atomic names listed in Table 22–1 as namespace
identifiers. For example: _orgunit , org , _site , site , and so forth. This limitation
applies to contexts in which the namespace identifiers can appear, as defined by the
arrangement of namespaces in “Structure of the Enterprise Namespace” on page 393.
FNS does not otherwise restrict the use of these atomic names in other contexts.

For example, the atomic name service is used as a namespace identifier relative to
a user name, as in user/fatima/service/calendar , to mean the root of user
fatima ’s service namespace. This does not preclude a system from using the name
service as a user name, as in user/service , because FNS specifies that the
context to which the name user/ is bound is for user names and not for namespace

FNS Policies 391

identifiers. In this case, service is unambiguously interpreted as a user name. On
the other hand, you should not create a directory named user because
/user/mikhail would cause confusion between the user mikhail and the file (or
subdirectory) /user/mikhail .

Composite Name Examples
This section shows examples of names that follow FNS policies. (See Table 22–2 for a
summary of these policies.)

The specific choices of organization names, site names, user names, host names, file
names, and service names (such as calendar and printer) are illustrative only;
these names are not specified by FNS policy.

Composing Names Relative to Organizations
The namespaces that can be associated with the organization namespace (_orgunit ,
orgunit , or org) are: user , host , service , fs , and site .

For example:

� orgunit/doc.com/site/videoconf.bldg-5 names a conference room
videoconf located in Building 5 of the site associated with the organization
doc.com . (You can also use the alias org for orgunit to form,
org/doc.com/site/videoconf.bldg-5 .)

� orgunit/doc.com/user/mjones names a user mjones in the organization
doc.com .

� orgunit/doc.com/host/smptserver1 names a machine smptserver1
belonging to the organization doc.com .

� orgunit/doc.com/fs/staff/agenda9604/ names a file staff/agenda9604
belonging to the organization doc.com .

� orgunit/doc.com/service/calendar names the calendar service for the
organization doc.com . This might manage the meeting schedules for the
organization.

Composing Names Relative to Users
The namespaces that can be associated with the user namespace are service and
fs .

� user/helga/service/calendar names the calendar service of a user named
helga .

� user/helga/fs/tasklist names the file tasklist under the home directory
of the user helga .

392 Solaris Naming Administration Guide ♦ May 1999

Composing Names Relative to Hosts
The namespaces that can be associated with the hosts namespace are service and
fs .

� host/mailhop/service/mailbox names the mailbox service associated with
the machine mailhop .

� host/mailhop/fs/pub/saf/archives.96 names the directory
pub/saf/archives.96 found under the root directory of the file system
exported by the machine mailhop .

Composing Names Relative to Sites
The namespaces that can be associated with the sites namespace are service and
fs .

� site/bldg-7.alameda/service/printer/speedy names a printer speedy
in the bldg-7.alameda site.

� site/alameda/fs/usr/dist names a file directory usr/dist available in the
alameda site.

Composing Names Relative to Services and Files
No other namespaces can be associated with either the files (fs) or services
(service) namespaces. For example, you cannot compose a name such as
/services/calendar/orgunit/doc.com . In other words, you cannot compose a
compound name relative to either the files or the service namespace. You can, of
course, compose a file or service name relative to some other namespace such as
/user/esperanza/service/calendar .

Structure of the Enterprise Namespace
FNS policies define the structure of the enterprise namespace. The purpose of this
structure is to allow easy and uniform composition of names. This enterprise
namespace structure has two main rules:

� Objects with narrower scopes are named relative to objects with wider scopes.

� Namespace identifiers are used to denote the transition from one namespace to the
next.

Table 22–2 is a summary of FNS policies for arranging the enterprise namespace.
Figure 22–2 shows an example of a namespace layout that follows these FNS policies.

FNS Policies 393

TABLE 22–2 Policies for the Federated Enterprise Namespace

Namespace

Identifiers
Subordinate
Namespaces Parent Context

Namespace
Organization Syntax

orgunit

_orgunit

org

Site, user, host, file
system, service

Enterprise root Hierarchical Dot-separated
right-to-left

site

_site

Service, file
system

Enterprise root,
organizational unit

Hierarchical Dot-separated
right-to-left

user

_user

Service, file
system

Enterprise root,
organizational unit

Flat Solaris login name

host

_host

Service, file
system

Enterprise root,
organizational unit

Flat Solaris host name

service

_service

Application
specific

Enterprise root,
organizational unit,
site, user, host

Hierarchical / separated
left-to-right

fs

_fs

None Enterprise root,
organizational unit,
site, user, host

Hierarchical / separated,
left-to-right

printer None Service Hierarchical / separated
left-to-right

394 Solaris Naming Administration Guide ♦ May 1999

orgunit site

sales manf east west

west east alameda

b21service

host user service
myokobobr rlee

printer

laser color

altairvega sirius

user host

Figure 22–2 Example of an Enterprise Namespace

The namespace of an enterprise is structured around a hierarchy of organizational
units. Names of sites, hosts, users, files, and services can be named relative to names
of organizational units by composing the organizational unit name with the
appropriate namespace identifier and object name.

In Figure 22–2, a user myoko in the west division of the sales organization of an
enterprise is named using the name orgunit/west.sales/user/myoko .

Note the use of the namespace identifier user to denote the transition from the
orgunit namespace to the user namespace. In a similar fashion (with the use of
appropriate namespace identifiers), names of files and services can also be named
relative to names of sites, users, or hosts. Names of sites can be named relative to
organizational unit names.

The goal of easy and uniform composability of names is met using this structure. For
example, once you know the name for an organizational unit within an enterprise
(for example, orgunit/west), you can name a user relative to it by composing it
with the user namespace identifier and the user’s login name to yield a name such
as orgunit/west/user/josepha .

To name a file in this user’s file system, you can use a name like
orgunit/west/user/josepha/fs/notes .

FNS Policies 395

Enterprise Root
The root context of an enterprise, is a context for naming objects found at the root
level of the enterprise namespace. Enterprise roots are bound in the global
namespace.

There are two ways of naming the enterprise root:

� .../ rootdomain.

� org// .

Using Three Dots to Identify the Enterprise Root
You can use .../ rootdomain/ to identify an enterprise root where:

� The initial three dots (...) are an atomic name indicating the global context (see
“Policies for the Global Namespace” on page 415 for a description of the global
context).

� rootdomain/ is the enterprise root domain. For example, doc.com/.

Thus, .../doc.com/ identifies the enterprise root of a company whose root
domain is doc.com . In this example, the context for naming sites associated with
the enterprise root is .../doc.com/site/ such as
.../doc.com/site/alameda or .../doc.com/site/alameda .bldg5 .

Note - You can only use the .../ rootdomain format if you have set up the global
binding in DNS.

Using org// to Identify the Enterprise Root
You can use org// to identify an enterprise root. In essence, org// is an alias or
functional equivalent for .../ domainname/ . When using org// , the double slashes
identifies the root enterprise context and namespaces associated with it.

For example, org//site/alameda names the Alameda site associated with the
enterprise root.

In contrast, org/ or orgunit/ (with a single slash) points to an organizational
context which is not necessarily named relative to the enterprise root. For example,
org/sales/site/alameda .

396 Solaris Naming Administration Guide ♦ May 1999

Enterprise Root Subordinate Contexts
The following objects can be named relative to the enterprise root:

� Organizational units in that enterprise

� Sites in the top organizational unit of the enterprise (an extension to XFN policies)

� Users in the top organizational unit of the enterprise

� Hosts in the top organizational unit of the enterprise

� Services for the top organizational unit of the enterprise

� File service for the top organizational unit of the enterprise

These objects are named by composing the namespace identifier of the target
object’s namespace with the name of the target object.

Enterprise Root and Organizational Subunits
Organizational subunits can be named relative to the enterprise root.

Given an organization root name, you can compose names for its subordinate
organizational unit contexts by using one of the namespace identifiers, orgunit or
_orgunit .

For example, if .../doc.com is the name of an enterprise, the root of the context
for naming organizational units is .../doc.com/orgunit/ , and organizational
unit names look like .../doc.com/orgunit/sales and
.../doc.com/orgunit/west.sales . Or, you could achieve the same result
with org//orgunit/sales .

The following objects can be named relative to an organizational unit name:

� Sites for that organizational unit (an extension to the XFN policies)

� Hosts in that organizational unit

� Users in that organizational unit

� Services for that organization unit

� File service for that organizational unit

For example, the name ...doc.com/orgunit/sales/service/calendar ,
identifies the calendar service of the sales organizational unit. (See
“Organizational Unit Namespace” on page 387 and “Composing Names Relative
to Organizations ” on page 392for a more detailed description of naming objects
relative to organization units.)

Enterprise Root and Sites
Sites are an extension to the XFN policies.

FNS Policies 397

Sites can be named relative to

� The enterprise root

� An organizational unit

Sites named relative to the enterprise root are the same as sites named relative to
the top organizational unit. Given an organization name, you can compose a name
for its site context by using one of the namespace identifiers, site or _site . For
example, if the enterprise root is ../doc.com the context for naming sites relative
to the enterprise root is ../doc.com/site . Sites would have names like
../doc.com/site/alameda .

The following objects can be named relative to a site name:

� Services at the site, such as the site schedule or calendar, printers, and faxes

� The file service available at the site

These objects are named by composing the site name with the namespace
identifier of the target object’s namespace and the name of the target object. For
example, the name site/Clark.bldg-5/service/calendar names the
calendar service of the conference room Clark.bldg-5 and is obtained by
composing the site name site/Clark.bldg-5 with the service name
service/calendar . (See “Composing Names Relative to Sites ” on page 393 for
a more detailed description of naming objects relative to sites.)

Enterprise Root and Users
Users can be named relative to

� An organizational unit

� The enterprise root

Users named relative to the enterprise root are the same as users named relative to
the top organizational unit. Given an organization name, you can compose a name
for its username context by using one of the namespace identifiers, user or
_user . Thus, if orgunit/east.sales names an organization, then
orgunit/east.sales/user/hirokani names a user hirokani in the
east.sales organizational unit.

The following objects can be named relative to a user name:

� Services associated with the user

� The user’s files

These objects are named by composing the user’s name with the namespace
identifier of the target object’s namespace and the name of the target object. For
example, the name user/sophia/service/calendar names the calendar for
the user sophia . (See “User Namespace” on page 390 and “Enterprise Root and
Users” on page 398 for more information on the user namespace and naming
objects relative to users.)

398 Solaris Naming Administration Guide ♦ May 1999

Enterprise Root and Hosts
Hosts can be named relative to

� An organizational unit

� The enterprise root

Hosts named relative to the enterprise root are the same as hosts named relative to
the top organizational unit. Given an organization name, you can compose a name
for its hostname context by appending one of the namespace identifiers, host or
_host . Thus if orgunit/west.sales names an organization, the name
org/west.sales/host/altair names a machine altair in the west.sales
organizational unit.

The following objects can be named relative to a host name:

� Services associated with the host

� Files exported by the host

These objects are named by composing the host name with the namespace
identifier of the target object’s namespace and the name of the target object. For
example, the name host/sirius/fs/release names the file directory
release being exported by the machine sirius . (See “Host Namespace” on
page 389 and “Composing Names Relative to Hosts ” on page 393 for more
information on the host namespace and naming objects relative to hosts.)

Enterprise Root and Services
A service can be named relative to

� An organizational unit

� The enterprise root

� A user

� A host

� A site

Services named relative to the enterprise root are the same as services named
relative to the top organizational unit.

A service context is named by using the namespace identifiers service or
_service , relative to the organization, site, user, or host with which it is
associated. For example, if orgunit/corp.finance names an organizational
unit, then orgunit/corp.finance/service/calendar names the calendar
service of the organizational unit corp.finance . (See “Service Namespace” on
page 390 and “Composing Names Relative to Services and Files ” on page 393 for
more information on the user namespace and naming objects relative to users.)

FNS does not restrict the types of bindings in the service namespace. Applications
can create contexts of a type other than service contexts and bind them in the
service namespace.

FNS Policies 399

FNS supports the creation of generic contexts in the service context. A generic
context is similar to a service context except that a generic context has an
application-determined reference type. All other properties of a generic context are
the same as a service context.

For example, a company named World Intrinsic Designs Corp (WIDC), reserves
the name extcomm in the service namespace to refer to a generic context for
adding bindings related to its external communications line of products. The
context bound to extcomm is a generic context, with reference type WIDC_comm.
The only difference between this context and a service context is that this context
has a different reference type.

Service names should be registered with SunSoft, Inc., as directed in “Service
Name and Reference Registration” on page 391.

Enterprise Root and Files
A file namespace can be named relative to

� The enterprise root

� An organizational unit

� A user

� A host

� A site

Files named relative to the enterprise root are the same as files named relative to
the top organizational unit. A file context is named by using the namespace
identifiers fs or _fs , relative to the organization, site, user, or host with which it
is associated. For example, if orgunit/accountspayable.finance names an
organizational unit, then the name user/jsmith/fs/report96.doc names her
file report96.doc . The file service of the user defaults to her home directory, as
specified in the NIS+ passwd table. (See “File Namespace” on page 390 for more
information on the user namespace.)

There can be no other type of context subordinate to a file system.

Enterprise Root and Printers
The printer context is an extension of XFN policies.

A printer namespace can be named in the service context. A printer context is named
by using the namespace identifier, printer , in the service context relative to

� An organizational unit

� A user

� A host

400 Solaris Naming Administration Guide ♦ May 1999

� A site

For example, if org/east.sales names an organizational unit, then
org/eastsales/service/printer names the printer service of the
organizational unit east.sales . Thus, an individual printer named lp1 would
be identified as: org/east.sales/service/printer/lp1 .

There can be no other type of context subordinate to a printer.

Initial Context Bindings for Naming Within the
Enterprise
An initial context is the starting place from which client users, hosts, and
applications can (eventually) name any object in the enterprise namespace.

Figure 22–3 shows the same naming system as the one shown in Figure 22–2, except
that the initial context bindings are shaded and shown in italics. These initial
contexts are shown from the point of view of the user, host, or application asking for
a name to be resolved.

thisens
myens

orgunit
site

org site

sales manf east west

west east alamedathisorgunit
myorgunit

b21
user host

service

host user service
myokobobr rlee myself

printer

laser color

altairvega sirius
thishost

user

Bound in
the initial context

host

Figure 22–3 Example of Enterprise Bindings in the Initial Context

XFN provides an initial context function, fn_ctx_handle_from_initial() , that
allows a client to obtain an initial context object as a starting point for name
resolution. The initial context has a flat namespace for namespace identifiers. The
bindings of these initial context identifiers are summarized in Table 22–3 and are
described in more detail in subsequent sections. Not all of these names need to

FNS Policies 401

appear in all initial contexts. For example, when a program is invoked by the
superuser, only the host and client-related bindings appears in the initial context,
none of the user-related bindings appear.

TABLE 22–3 Initial Context Bindings for Naming Within the Enterprise

Namespace

Identifier Binding

myself,
_myself,
thisuser

The context of the user who is trying to resolve a name.

myens, _myens The enterprise root of the user who is trying to resolve a name.

myorgunit,
_myorgunit

The user’s primary organizational unit context. For example, in an
NIS+ environment, the primary organizational unit is the user’s NIS+
home domain.

thishost,
_thishost

The context of the host that is trying to resolve a name.

thisens,
_thisens

The enterprise root of the host that is trying to resolve a name.

thisorgunit,
_thisorgunit

The host’s primary organizational unit context. For example, in an
NIS+ environment, the primary organizational unit is the host’s NIS+
home domain

user, _user The context in which users in the same organizational unit as the host
are named

host, _host The context in which hosts in the same organizational unit as the host
are named

org, orgunit,
_orgunit

The root context of the organizational unit namespace in the host’s
enterprise. For example, in an NIS+ environment, this corresponds to
the NIS+ root domain

site, _site The root context of the site namespace at the top organizational unit if
the site namespace has been configured

In XFN terminology, names with a leading underscore prefix are called the canonical
namespace identifiers. The names without the leading underscore, with the additions
of org and thisuser , are Solaris customizations. Solaris customized namespace

402 Solaris Naming Administration Guide ♦ May 1999

identifiers are not guaranteed to be recognized in other, non-Solaris environments.
The canonical namespace identifiers are always recognized and therefore portable to
other environments.

Note - The current implementations of FNS does not support the addition or
modification of names and bindings in the initial context.

Initial context bindings fall into three basic categories:

� User-related bindings (see “User-related Bindings” on page 403)

� Host-related bindings (see “Host-related Bindings” on page 404)

� “Shorthand” bindings (see ““Shorthand” Bindings” on page 405)

User-related Bindings
FNS assumes that there is a user associated with a process when the XFN initial
context function is invoked. This association is based on the effective user ID (euid) of
the process. Although the association of user to process can change during the life of
the process, the original context handle does not change.

FNS defines the following bindings in the initial context that are related to the user
requesting name resolution.

myself
The namespace identifier myself (or either synonym _myself or thisuser) in the
initial context resolves to the user context of whomever is making the request. For
example, if a process owned by the user jsmith requests name resolution, the name:

� myself resolves in the initial context to jsmith ’s user context

� myself/fs/.cshrc names the file .cshrc of jsmith

myorgunit
FNS assumes that each user is affiliated with an organizational unit of an enterprise.
A user can be affiliated with multiple organizational units, but there must be one
organizational unit that is primary, perhaps by its position in the organizational
namespace or by the user’s role in the organization.

� NIS+. In an NIS+ namespace, this organizational unit corresponds to the user’s
home domain (which could be a subdomain).

� NIS. In a NIS namespace, there is only one enterprise-level organizational unit
which corresponds to the user’s domain.

� Files. In a files-based namespace, there is only one organizational unit, org//
which maps to myorgunit .

FNS Policies 403

The namespace identifier myorgunit (or _myorgunit) resolves in the initial
context to the context of the primary organizational unit of the user making the
request. For example, if the user making the request is jsmith , and jsmith ’s
home domain is east.sales , then myorgunit resolves in the initial context to
the organizational unit context for east.sales , and the name
myorgunit/service/calendar resolves to the calendar service of
east.sales .

myens
FNS assumes that there is an association of a user to an enterprise. This corresponds
to the namespace that holds myorgunit .

The namespace identifier myens (and _myens) resolves in the initial context to the
enterprise root of the enterprise to which the user making the request belongs. For
example, if jsmith is making the request, and jsmith ’s NIS+ home domain is
east.sales , which in turn is in the NIS+ hierarchy with the root domain name of
doc.com. The name myens/orgunit/ resolves to the top organizational unit of
doc.com .

Note - Be careful about set-user-ID programs when using user-related composite
names, such as myorgunit or myself/service , because these bindings depend on
the effective user ID of a process. For programs that set-user-ID to root to access
system resources on behalf of the caller, it is usually a good idea to call
seteuid(getuid()) before calling fn_ctx_handle_from_initial() .

Host-related Bindings
A process is running on a particular host when the XFN initial context function is
invoked. FNS defines the following bindings in the initial context that are related to
the host the process is running on.

thishost
The namespace identifier thishost (or _thishost) is bound to the host context of
the host running the process. For example, if the process is running on the machine
cygnus , thishost is bound to the host context of cygnus , and the name
thishost/service/calendar refers to the calendar service of the machine
cygnus .

404 Solaris Naming Administration Guide ♦ May 1999

thisorgunit
FNS assumes that a host is associated with an organizational unit. A host can be
associated with multiple organizational units, but there must be one that is primary.
In an NIS+ namespace, this organizational unit corresponds to the host’s home
domain.

The namespace identifier thisorgunit (or _thisorgunit) resolves to the primary
organizational unit of the host running the process. For example, if that host is the
machine cygnus , and cygnus ’s NIS+ home domain is west.sales , then
thisorgunit resolves to the organizational unit context for west.sales and the
name thisorgunit/service/fax refers to the fax service of the organizational
unit west.sales .

thisens

FNS assumes that there is an association of a host to an enterprise. This corresponds
to the namespace that holds thisorgunit .

The namespace identifier thisens (or _thisens) resolves to the enterprise root of
the host running the process. For example, under NIS+, if the host’s home domain is
sales.doc.com , then the name thisens/site/ resolves to the root of the site
namespace of doc.com.

“Shorthand” Bindings
FNS defines the following “shorthand” bindings in the initial context to enable the
use of shorter names to refer to objects in certain commonly referenced namespaces.

user
The namespace identifier user (or _user) is bound in the initial context to the
username context in organizational unit of the host running the process. This allows
other users in the same organizational unit to be named from this context.

From the initial context, the names user and thisorgunit/user resolve to the
same context. For example, if the host running the process is a machine altair and
altair is in the east.sales organizational unit, the name user/medici names
the user medici in east.sales .

host

The namespace identifier host (or _host) is bound in the initial context to the
hostname context organizational unit of the host running the process. This allows
other hosts in the same organizational unit to be named from this context.

FNS Policies 405

From the initial context, the names host and thisorgunit/host resolve to the
same context. For example, if the host running the process is a machine named
sirius and it is in the east.sales organizational unit, the name host/sirius
names the machine sirius in the organizational unit east.sales .

org

The namespace identifier org (or orgunit, _orgunit) is bound in the initial
context to the root context of the organization of the enterprise to which the host
running the process belongs.

From the initial context, the names org and thisens/orgunit resolve to the same
context. For example, if the host running the process is the machine aldebaran and
aldebaran is in the enterprise doc.com ., the name org/east.sales names the
organizational unit east.sales in doc.com.

site

The namespace identifier site (or _site) is bound in the initial context to the root
of the site naming system of the top organizational unit of the enterprise to which
the host running the process belongs.

From the initial context, the names site and thisens/site resolve to the same
context. For example, if the host running the process is the machine aldebaran and
aldebaran is in the enterprise doc.com ., the name site/pine.bldg-5 names a
conference room, pine in building 5 of doc.com.

FNS and Enterprise Level Naming
FNS provides a method for federating multiple naming services under a single,
simple interface for basic naming operations. FNS is designed to work with three
enterprise-level name services:

� NIS+. See “How FNS Policies Relate to NIS+” on page 407, below and “FNS and
NIS+ Naming” on page 377

� NIS. See “How FNS Policies Relate to NIS” on page 409 and “FNS and NIS
Naming” on page 377

� Files. See “How FNS Policies Relate to Files-Based Naming” on page 410 and
“FNS and Files-Based Naming” on page 378

FNS is also designed to work with applications such as printer and calendar
service as described in “Target Client Applications of FNS Policies” on page 410.

406 Solaris Naming Administration Guide ♦ May 1999

How FNS Policies Relate to NIS+
See “FNS and NIS+ Naming” on page 377 for overview and background information
relating to FNS and NIS+. If you are not familiar with NIS+ and its terminology,
refer to Part 1 and Glossary of this guide. You will find it helpful to be familiar with
the structure of a typical NIS+ environment.

FNS stores bindings for enterprise objects in FNS tables which are located in
domain-level org_dir NIS+ directories on NIS+ servers. FNS tables are similar to
NIS+ tables. These FNS tables store bindings for the following enterprise namespaces:

� Organization namespaces as described in “NIS+ Domains and FNS Organizational
Units” on page 407.

� Hosts namespaces as described in “NIS+ Hosts and FNS Hosts ” on page 408

� Users namespace as described in “NIS+ Users and FNS Users” on page 408.

� Sites namespace which allows you to name geographical sites relative to the
organization, hosts, and users.

� Services namespace which allows you to name services such a printer service and
calendar service relative to the organization, hosts, and users.

NIS+ Domains and FNS Organizational Units
FNS names organization, user, and host enterprise objects within NIS+ which is the
preferred Solaris enterprise name service. An NIS+ domain is comprised of logical
collections of users and machines and information about them, arranged to reflect
some form of hierarchical organizational structure within an enterprise.

FNS is implemented on NIS+ by mapping NIS+ domains to FNS organizations. An
organizational unit name corresponds to a NIS+ domain name and is identified using
either the fully qualified form of its NIS+ domain name, or its NIS+ domain name
relative to the NIS+ root. The top of the FNS organizational namespace is mapped to
the NIS+ root domain and is accessed using the name org/ from the initial context.

In NIS+, users and hosts have a notion of a home domain. A host or user’s home
domain is the NIS+ domain that maintains information associated with them. A user
or host’s home domain can be determined directly using its NIS+ principal name. An
NIS+ principal name is composed of the atomic user (login) name or the atomic host
name and the name of the NIS+ home domain. For example, the user sekou with
home domain doc.com. has an NIS+ principal name sekou.doc.com and the
machine name vega has an NIS+ principal name vega.doc.com .

A user’s NIS+ home domain corresponds to the user’s FNS organizational unit.
Similarly, a host’s home domain corresponds to its FNS organizational unit.

FNS Policies 407

Trailing Dot in Organization Names
The trailing dot in an organization name indicates that the name is a fully qualified
NIS+ domain name. Without the trailing dot, the organization name is an NIS+
domain name to be resolved relative to the NIS+ root domain.

For example, if the NIS+ root domain is doc.com. , with a subdomain
sales.doc.com. , the following pairs of names refer to the same organization:

TABLE 22–4 Example of Relative and Fully Qualified Organization Names Under NIS+

Relative Name Fully Qualified Name

org/ org/doc.com.

org/sales org/sales.doc.com.

The name org/manf. (with trailing dot) would not be found, because there is no
NIS+ domain with just the manf . name.

NIS+ Hosts and FNS Hosts
Hosts in the NIS+ namespace are found in the hosts.org_dir table of the host’s
home domain. Hosts in an FNS organization correspond to the hosts in the
hosts.org_dir table of the corresponding NIS+ domain. FNS provides a context
for each host in the hosts table.

NIS+ Users and FNS Users
Users in the NIS+ namespace are listed in the passwd.org_dir table of the user’s
home domain. Users in an FNS organization correspond to the users in the
passwd.org_dir table of the corresponding NIS+ domain. FNS provides a context
for each user in the passwd table.

NIS+ Security and FNS
The FNS fncreate command creates FNS tables and directories in the NIS+
hierarchy associated with the domain of the host on which the command is run. In
order to run fncreate , you must be an authenticated NIS+ principle with
credentials authorizing you to Read, Create, Modify, and Destroy NIS+ objects in that
domain. You will be the owner of the FNS tables created by fncreate . One way to
obtain this authorization is to be a member of the NIS+ group that has administrator
privileges in the domain.

408 Solaris Naming Administration Guide ♦ May 1999

The NIS_GROUPenvironment variable should be set to name of the NIS+
administration group for the domain prior to running fncreate . You can specify
whether or not individual users can make changes to FNS data that relates to them.

See Chapter 6, for a description of NIS+ security.

How FNS Policies Relate to NIS
See “FNS and NIS Naming” on page 377 for overview and background information
relating to FNS and NIS.

FNS provides the XFN interface for performing basic naming and attributes
operations using NIS as the naming service.

FNS stores bindings for enterprise objects in FNS maps which are located in a
/var/yp/ domainname directory on the NIS master server (and NIS slave servers, if
any). FNS maps are similar in structure and function to FNS maps. These NIS maps
store bindings for the following enterprise namespaces:

� Organization which provides a namespace for naming objects relative to an entire
enterprise. When NIS is the underlying naming service, there is a single
organizational unit context that corresponds to the NIS domain. This organization
unit context is identified in FNS by the NIS domain name or an empty name
which defaults to the machines NIS domain name.

� Hosts namespace which correspond to the hosts.byname map of the NIS
domain. FNS provides a context for each host in the hosts.byname map.

� Users namespace which correspond to the passwd.byname map. FNS provides a
context for each user in the passwd.byname map of the domain.

� Sites namespace which allows you to name geographical sites relative to the
organization, hosts, and users.

� Services namespace which allows you to name services such as a printer service
and calendar service relative to the organization, hosts, and users.

FNS provides contexts which allow other objects to be named relative to these five
namespaces.

The FNS fncreate command creates the FNS maps in the /var/yp/ domainname
directory of a NIS master server. This can be the same machine that is master
server for the NIS naming service, or it can be a different machine that functions
as an FNS master server. (If there are slave servers, NIS pushes the FNS maps to
them as part of its normal operation.) To run fncreate , you must be a privileged
user on the server that will host the FNS maps. Individual users cannot make
changes to FNS data.

FNS Policies 409

How FNS Policies Relate to Files-Based Naming
See “FNS and Files-Based Naming” on page 378 for overview and background
information relating to FNS and files.

FNS provides the XFN interface for performing basic naming and attribute
operations using local files as the naming service.

FNS stores bindings for enterprise objects in files which are located in a /var/fn
directory which is normally NFS mounted on each machine. These FNS files store
bindings for the following enterprise namespaces:

� Organization which provides a namespace for naming objects relative to the entire
enterprise. When local files are the underlying naming service, there is a single
organizational unit context that represents the entire system. This organization
unit context is always identified in FNS as org// .

� Hosts namespace which correspond to the /etc/hosts file. FNS provides a
context for each host in the /etc/hosts file.

� Users namespace which correspond to the /etc/passwd file. FNS provides a
context for each user in the /etc/passwd file.

� Sites namespace which allows you to name geographical sites relative to the
organization, hosts, and users.

� Services namespace which allows you to name services such as a printer service
and calendar service relative to the organization, hosts, and users.

FNS provides contexts which allow other objects to be named relative to these five
namespaces.

The FNS fncreate command creates the FNS files in the /var/fn directory of
the machine on which the command is run. To run fncreate , you must have
super-user privileges on that machine. Based on UNIX user IDs, individual users
are allowed to modify their own contexts, bindings, and attributes using FNS
commands.

Target Client Applications of FNS Policies
One goal of the FNS policies is to maintain coherence across the most commonly
used tools, including the file system, the DeskSet tools, such as Calendar Manager,
Print Tool, File Manager, and Mail Tool, and services that support these tools, such as
RPC, email, and print subsystems.

Note - Some of these examples are not currently implemented in the Solaris
environment. They are listed here to illustrate how FNS can be used.

� Calendars. Instead of using names of the form username@hostname to access
someone’s calendar, in most cases you simply supply a site, organization, or user’s
name. You should also be able to use composite names to name calendars. For

410 Solaris Naming Administration Guide ♦ May 1999

example, when federated under FNS, names of the following form are acceptable
to calendar manager:

� bernadette

� user/bernadette

� site/pine.bldg-5 (calendar for Pine conference room)
� org/sales (calendar for the sales organization)

� Printing. Instead of naming a specific printer by its name, you should be able to
name a printer relative to a user, site, or organization. For example:

� ilych (ilych ’s default printer)
� org/sales (an organization’s default printer)
� site/pine.bldg-5 (printer in the Pine conference room)

� File access. You should be able to use composite names to name file systems and
files. The automounter should use FNS to make resolution of composite names
possible. For example, you should be able to use a file name like
/xfn/user/baruch/fs/.cshrc to reference the .cshrc file for user baruch .

� RPC. Instead of addressing services by their host name, program, and version
numbers, you should be able to name the service using a composite name. For
example, you should be able to name an RPC service relative to a user or an
organization such as: user/hatori/service/rpc .

� Mail – Similarly, composite names can be used to name mail destinations. You
should be able to use names such as the following:

� angus

� user/angus

� org/mlist (an organization’s mailing list)
� site/pine.bldg-5 (mailbox of the conference room coordinator)

� Other desktop applications – You should be able to pass composite names to other
desktop applications such as spreadsheets, document preparation tools, fax tools,
and so on. Some of these applications attach their own namespace to the service
namespace, thus becoming part of the FNS federation.

Example Applications: Calendar Service
This is a description of how one application, a calendar service, could be modified to
use FNS policies. This example illustrates how FNS composite names might be
presented to and accepted from users.

The DeskSet’s calendar service is typical of client-server applications. Calendar
servers run on some set of machines and maintain the users’ calendars. Calendar

FNS Policies 411

Manager (cm) runs on the desktop and contacts the appropriate server to obtain the
calendars of interest.

The calendar service could benefit from FNS using a simple registry/lookup model
as follows:

� Binding – Upon startup, the server registers the calendars that it manages by
binding a reference containing its own ONC+ RPC address (host, program, version)
to the composite name for each calendar it manages, such as
user/jsmith/service/calendar .

� Lookup – When using cm, the user specifies another user’s calendar simply by
entering the user’s name (for example, hirokani) or selecting it from a list of
names previously entered. Given the user name hirokani , cm composes the
composite name user/hirokani/service/calendar and uses this to look up
the RPC address that it needs to communicate with the server that manages that
calendar.

In the previous example, we used the name “calendar ” to denote a calendar
binding. The developers of the calendar service should register the name
“calendar ” with the FNS administrator, much as RPC programs are registered
with the RPC administrator. Refer to “Service Name and Reference Registration”
on page 391.

Note - The name “calendar ” used here is an example. FNS policy does not specify
the names of specific services.

The calendar service could take further advantage of FNS policy by allowing
calendars to be associated with sites, organizations, and hosts, while still naming
them in a uniform way. For example, by allowing calendars to be associated with
a conference room (a site), the service can be used to “multibrowse” the conference
room’s calendar as well as a set of user calendars to find an available time for a
meeting in that room. Similarly, calendars can be associated with organizations for
group meetings and hosts for keeping maintenance schedules.

The cm calendar manager could simplify what the user needs to specify by
following some simple steps.

1. cm uses a tool for accepting composite names from the user and constructing the
name of the object whose calendar is of interest.

The object is the name of a user, a site, a host, or an organization. For example,
the user might enter the name kuanda and the calendar manager generates the
composite name user/kuanda . This tool could be shared amongst a group of
DeskSet applications.

2. cm uses the XFN interface to compose this name with the suffix
/service/calendar to obtain the name of the calendar.

3. This calendar name is then resolved relative to the process’s initial context.

Continuing with the example, this results in the resolution of the name
user/kuanda/service/calendar . Similarly, if the user enters the name of a

412 Solaris Naming Administration Guide ♦ May 1999

site, pine.bldg-5 , cm generates the name
site/pine.bldg-5/service/calendar for resolution.

Other services such as printing and mail could take advantage of the FNS policies
in a similar way.

FNS File System Namespace
Files may be named relative to users, hosts, organizations, and sites in FNS by
appending the fs enterprise namespace identifier to the name of the object, and
following this with the name of the file. For example, the file draft96 in the sales
division’s budget directory might be named org/sales/fs/budget/draft96 .

The initial context is located under /xfn in the file system’s root directory. Thus a
user might view the file by typing

% more /xfn/org/sales/fs/budget/draft96

Existing applications can access this directory just as they would any other directory.
Applications do not need to be modified in any way or use the XFN API.

NFS File Servers
NFS is Sun’s distributed file system. The files associated with an object will generally
reside on one or more remote NFS file servers. In the simplest case, the namespace
identifier fs corresponds to the root of an exported NFS file system, as shown in
Figure 22–4.

user

kuanda

fs
= NFS file system

Figure 22–4 NFS File System—Simple Case

In contrast, an object’s file system may be composed of multiple—and possibly
overlapping—remote mounts, woven together into a “virtual” directory structure
managed by FNS.

FNS Policies 413

Figure 22–5 illustrates how this capability might be used to piece together an
organization’s file system from three separate file servers. The project directory,
along with its lib subdirectory, resides on one file server, while the src
subdirectory resides on another. Users and applications need not be aware of the use
of multiple servers; they see a single, seamless namespace.

= NFS file system

org

sales

fs

tools project

db lib src

Figure 22–5 NFS File System—Multiple Servers

The Automounter
For efficiency, the automounter is used to mount FNS directories on demand. The
default /etc/auto_master configuration file contains the line:

/xfn -xfn

which tells the automounter that the FNS namespace is “mounted” under /xfn , as
specified by XFN.

Since the automounter is used to mount directories named through FNS, the
subdirectories of an FNS directory cannot be listed until they have been mounted.
For example, suppose the file system of the sales organization is composed of
multiple NFS file systems. The following ls command shows only two file systems
that have been visited recently and are currently mounted:

% ls /xfn/org/sales/fs
customers products

414 Solaris Naming Administration Guide ♦ May 1999

To see the entire listing, use the fnlist command.:

% fnlist org/sales/fs
Listing ‘org/sales/fs’:
products
goals
customers
incentives

The FNS Printer Namespace
The printer context is not part of the XFN policies. It is provided in FNS in order
to store printer bindings.

FNS provides the capability to store printer bindings in the FNS namespace. This
gives print servers the means to advertise their services and allow users to browse
and choose amongst the available printers without client side administration.

Printer bindings are stored in printer contexts, which are associated with
organizations, users, hosts, and sites. Hence, each organization, user, host, and site
has its own printer context.

The printer context is created under the service context of the respective
composite name. For example, the composite name shown below has the following
printer context:

org/doc.com./service/printer

The name of a printer for a host, deneb , with a printer context might look like this:

host/deneb/service/printer/laser

Policies for the Global Namespace
Global name services have worldwide scope. This section describes the policies for
naming objects that use global naming systems.

In regard to naming, an enterprise links to the federated global namespace by
binding the root of the enterprise in the global namespace. This enables applications
and users outside the enterprise to name objects within that enterprise. For example,

FNS Policies 415

a user within an enterprise can give out the global name of a file to a colleague in
another enterprise to use.

DNS and X.500 contexts provide global-level name service for naming enterprises.
FNS provides support for both DNS and X.500 contexts. Without FNS, DNS and
X.500 allow outside access to only limited portions of the enterprise namespace. FNS
enables outside access to the entire enterprise namespace including services such as
calendar manager.

Initial Context Bindings for Global Naming
The atomic name ”... ” (three dots) appears in the initial context of every FNS
client. The atomic name “... ” is bound to a context from which global names can
be resolved.

TABLE 22–5 Initial Context Bindings for Global Naming

Atomic Name Binding

. .. Global context for resolving DNS or X.500 names

/ ... Synonym for three dots

Global names can be either fully qualified Internet domain names, or X.500
distinguished names.

� Internet domain names appear in the syntax specified by Internet RFC 1035. For
example, .../doc.com . (See “Federating DNS” on page 416.)

� X.500 names appear in the syntax determined by the X/Open DCE Directory. For
example, .../c=us/o=doc . (See “Federating X.500/LDAP” on page 417.)

The names “... ” and “/... ” are equivalent when resolved in the initial context.
For example, the names /.../c=us/o=doc and.../c=us/o=doc resolve in the
initial context to the same object.

Federating DNS
Any fully qualified DNS name can be used in the global context. When a DNS name
is encountered in the global namespace, it is resolved using the resolver library. The
resolver library is the DNS name-resolution mechanism. A DNS name typically
resolves to an Internet host address or to DNS domain records. When the global

416 Solaris Naming Administration Guide ♦ May 1999

context detects a DNS name, the name is passed to the DNS resolver for resolution.
The result is converted into an XFN reference structure and returned to the requester.

The contents of DNS domains can be listed. However, the listing operations might be
limited by practical considerations such as connectivity and security on the Internet.
For example, listing the global root of the DNS domain is generally not supported by
the root DNS servers. Most entities below the root, however, do support the list
operation.

DNS hosts and domains are distinguished from each other by the presence or
absence of name service (NS) resource records associated with DNS resource names.

� DNS domain names. If an NS record exists for a resource name, then that name is
considered to be the name of a domain, and the returned reference is of type
inet_domain .

� DNS host names. If no NS record exists for a resource name, then that name is
considered to be the name of a host, and the returned reference is of type
inet_host .

DNS can be used to federate other naming systems by functioning as a non-terminal
naming system.

For example, an enterprise naming system can be bound to doc.com in DNS such
that the FNS name .../doc.com/ refers to the root of that enterprise’s FNS
namespace.

The enterprise naming system is bound to a DNS domain by adding the appropriate
text (TXT) records to the DNS map for that domain. When the FNS name for that
domain includes a trailing slash (/), the TXT resource records are used to construct a
reference to the enterprise naming system.

For general information about DNS, see the in.named Man page or the DNS
chapters in Solaris Naming Setup and Configuration Guide.

Federating X.500/LDAP
X.500 is a global directory service. It stores information and provides the capability
to look up information by name as well as to browse and search for information.

X.500 information is held in a directory information base (DIB). Entries in the DIB are
arranged in a tree structure. Each entry is a named object and comprises a defined
set of attributes. Each attribute has a defined attribute type and one or more values.

An entry is unambiguously identified by a distinguished name that is the concatenation
of selected attributes from each entry in the tree along a path leading from the root
down to the named entry. For example, using the DIB shown in Figure 22–6,

c=us/o=doc

is a distinguished name of the doc organization in the U.S. Users of the X.500
directory can interrogate and modify the entries and attributes in the DIB.

FNS Policies 417

.../

ja ukus

doc ajax

Country

Organization

Figure 22–6 Example of an X.500 Directory Information Base

FNS federates X.500 by supplying the necessary support to permit namespaces to
appear to be seamlessly attached below the global X.500 namespace.

For example, FNS facilitates linking the enterprise naming system for the doc
organization below X.500. Starting from the initial context, an FNS name to identify
the sales organizational unit of the doc organization might be

.../c=us/o=doc/orgunit/sales

The name within the enterprise is simply concatenated onto the global X.500 name.
(Note that FNS names use the name ’’...’’ in the initial context to indicate that a
global name follows.)

Name resolution of FNS names takes place as follows. When an X.500 name is
encountered in the global namespace, it is resolved using the X.500 name- resolution
mechanism. One of three outcomes is possible:

� The full name resolves to an X.500 entry. This indicates that the entry is held in
X.500. The requested FNS operation is then performed on that entry.

� A prefix of the full name resolves to an X.500 entry. This indicates that the
remainder of the name belongs to a subordinate naming system.

The next naming system pointer (NNSP) to the subordinate naming system is
examined to return the XFN reference. Name resolution then continues in the
subordinate naming system.

� An error is reported.

X.500 entries can be examined and modified using FNS operations (subject to
access controls). However, it is not currently possible to list the subordinate entries
under the root of the X.500 namespace by using FNS.

418 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 23

FNS and Enterprise Name Services

This chapter discusses administration matters relating to FNS and enterprise level
naming services.

� “FNS and Enterprise-Level Naming Services” on page 419

� “Choosing an Enterprise-Level Name Service” on page 420

� “FNS and Naming Service Consistency” on page 420

� “Selecting a Naming Service” on page 422

� “Default Naming Service” on page 422

� “When NIS+ and NIS Coexist” on page 423

� “Advanced FNS and NIS+ Issues” on page 423

� “Advanced FNS and NIS Issues” on page 425

� “Advanced FNS and File-Based Naming Issues ” on page 428

FNS and Enterprise-Level Naming
Services
Enterprise-level naming services are used to name objects within an enterprise. FNS
currently supports three enterprise-level naming services:

� NIS+. (See also “FNS and NIS+ Naming” on page 377 and “How FNS Policies
Relate to NIS+” on page 407.

� NIS. See “FNS and NIS Naming” on page 377 and “How FNS Policies Relate to
NIS” on page 409.

419

� Local files. See “FNS and Files-Based Naming” on page 378 and “How FNS
Policies Relate to Files-Based Naming” on page 410.

Choosing an Enterprise-Level Name
Service
When you initially set up and configure your FNS namespace with the fncreate
command as described in Solaris Naming Setup and Configuration Guide, the correct
default name service is automatically selected for each machine.

If you later change a machine’s primary enterprise-level name service, you should
run the fnselect command on that machine. See “Selecting a Naming Service” on
page 422 for details.

FNS and Naming Service Consistency
As a system administrator one of your tasks is to maintain consistency between FNS
and the underlying naming service by ensuring that the contents of FNS contexts
and the files, maps, or tables of the underlying naming service correspond.

When you initially set up and configure your FNS namespace with the fncreate
command as described in Solaris Naming Setup and Configuration Guide, fncreate
ensures that FNS contexts are correctly created and are consistent with the
underlying naming service data. After the FNS contexts have been set up, this
correspondence needs to be maintained as users, hosts, printers, and so forth are
added to and removed from the system. The following sections describe how to
maintain FNS and name service consistency.

FNS and Solstice AdminSuite
If you have the Solstice AdminSuite product, you can use it to add, change, or delete
user and host information in the underlying name service. This is a recommended
method because the AdminSuite tools update the corresponding FNS namespace
automatically.

420 Solaris Naming Administration Guide ♦ May 1999

Checking Naming Inconsistencies
When updates to FNS or the primary name service are made independent of the
Solstice AdminSuite product, the resulting inconsistencies are resolved by the use of
the FNS tool, fncheck . The fncheck command checks for inconsistencies between
the FNS hostname and user contexts, and:

� NIS+. The NIS+ hosts.org_dir and passwd.org_dir system tables.

� NIS. The NIS hosts.byname and passwd.byname maps.

� Files. The etc/hosts and etc/passwd files.

The fncheck command lists those host and user names that are in the FNS
namespace but not in the name service data, and those host and user names that are
in the name service data but not in the FNS namespace.

The command syntax is:

fncheck [-r][-s][-u][-t hostname| username][domain_name]

TABLE 23–1 fncheck Command Options

Option Description

domain Apply the command to an NIS+ domain other than the one in which you are
running the command.

−t
Specifies the type of context to check. Allowed types are hostname or
username .

−s
Lists host or user names from the namespace dataset that are not in the FNS
namespace

−r
Lists host or user names from the FNS namespace that do not have entries in
the corresponding namespace dataset

−u
Updates the FNS namespace based on information in the relevant namespace
dataset

The −t option is used to specify the contexts to check (host or user). If you omit the
−t option, both the hostname and username contexts are checked.

When the −r option is used with the −u option, items that appear only in the FNS
context are removed from the FNS context. When the −s option is used with the −u
option, items that appear only in the namespace dataset are added to the FNS
context. If neither −r or −s are specified, items are added and removed from the FNS
context to make it consistent with the corresponding namespace data.

FNS and Enterprise Name Services 421

Selecting a Naming Service
When FNS constructs the bindings in the initial context for a machine, it does so on
the basis of a particular naming service.

You can choose which name service FNS is to use with the fnselect command.
The name service setting you specify with fnselect affects the entire machine, all
applications running on that machine, and all users logged in to that machine.

Only root can run fnselect . The command syntax is:

fnselect [-D] [namesvc]

TABLE 23–2 fnselect Command Options

Option Description

namesvc
The naming service you want to select. Must be one of: default ,
nisplus , nis , or files .

−D
Display the naming service used to generate the FNS initial context.

For example, to select NIS+ as a machine’s name service:

#fnselect nisplus

For example, to select the default as a machine’s name service and print the name of
the service used to generate the FNS initial context:

#fnselect -D default

Default Naming Service
If you do not designate a naming service with fnselect , FNS uses the default
naming service. The default naming service is determined by FNS based on the name
service that the machine is using. If the machine is an NIS+ client, FNS uses NIS+ as
the name service. If the machine is a NIS client, FNS uses NIS. If the machine is
neither an NIS+ nor a NIS client, FNS uses /etc files as the machine’s default name
service.

422 Solaris Naming Administration Guide ♦ May 1999

When NIS+ and NIS Coexist
In rare cases you may need to access both NIS+ and NIS-based contexts. For
example, you might have a NIS server running that is itself an NIS+ client. In this
situation, you use the fnselect command to select the enterprise-level naming
service that you want to work with.

Advanced FNS and NIS+ Issues
This section provides detailed information on the relationship between NIS+ objects
and FNS objects. This information is useful when you must change the access control
of FNS objects.

Migrating to NIS+ From NIS or Files-Based
Naming
See:

� “Migrating From NIS to NIS+” on page 427.

� “Migrating From Files-Based Naming to NIS or NIS+” on page 429.

Mapping FNS Contexts to NIS+ Objects
FNS contexts are stored as NIS+ objects. All contexts associated with an organization
are stored under the FNS ctx_dir directory of the associated NIS+ domain. The
ctx_dir directory resides at the same level as the org_dir directory of the same
domain. In other words, when running in conjunction with FNS, for every NIS+
domain or subdomain, there are corresponding org_dir , groups_dir and
ctx_dir directory objects.

Use the −v option for the fnlookup or fnlist command to see the detailed
description of references. The internal name field displays the name of the
corresponding NIS+ object.

Browsing FNS Structures Using NIS+ Commands
The NIS+ command, nisls , can be used to list the NIS+ objects used by FNS. For
example, the following commands list the contents of the NIS+ domain directory and
its ctx_dir subdirectory.

FNS and Enterprise Name Services 423

nisls doc.com.
doc.com.:
manf
sales
groups_dir
org_dir
ctx_dir

nisls ctx_dir.doc.com.
ctx_dir.DOC.COM.:
fns
fns_user
fns_host
fns_host_alto
fns_host_mladd
fns_host_elvira
fns_user_jjones
fns_user_jsmith
fns_user_aw

Use the niscat command to list the contents of the fns_hosts table.

niscat fns_host.ctx_dir
altair *BINARY* *BINARY*
cygnus *BINARY* *BINARY*
centauri *BINARY* *BINARY*

Checking Access Control
Use niscat −o to see the access control of a context. To see the access control of a
particular binding, use the name of the binding entry in the parent context’s binding
table (that is, the name displayed in the internal name field in the output of
fnlookup −v and fnlist −v):

niscat -o fns_host.ctx_dir
Object Name : fns_host
Owner : alto.doc.com.
Group : admin.doc.com.
Domain : ctx_dir.doc.com.
Access Rights : r-c-rmcdrmcdr-c-
Time to Live : 53:0:56
Object Type : TABLE
Table Type : H
Number of Columns : 3
Character Separator
Search Path :
Columns :

(continued)

424 Solaris Naming Administration Guide ♦ May 1999

(Continuation)

[0] Name : atomicname
Attributes : (SEARCHABLE, TEXTUAL DATA, CASE INSENSITIVE)
Access Rights : r-c-rmcdrmcdr-c-

[1] Name : reference
Attributes : (BINARY DATA)
Access Rights : r-c-rmcdrmcdr-c-

[2] Name : flags
Attributes : (BINARY DATA)
Access Rights : r-c-rmcdrmcdr-c-

niscat -o "[atomicname=altair],fns_host.ctx_dir"
Object Name : fns_host
Owner : altair.doc.com.
Group : admin.doc.com.
Domain : ctx_dir.doc.com.
Access Rights : r-c-rmcdrmcdr-c-
Time to Live : 12:0:0
Object Type : ENTRY

Entry data of type H
[1] - [5 bytes] ’alto’
[2] - [104 bytes] ’0x00 ...’
[3] - [1 bytes] 0x01

(See “The niscat Command ” on page 235 for additional information on the
niscat command.)

To change the access control or ownership of a particular context, use the commands:

� nischown

� nischmod

� nischgrp

Give either the binding entry or the bindings table as an argument, depending on the
object the operation is to affect.

Advanced FNS and NIS Issues
This section provides specific information on the relationship between NIS and FNS.

FNS and Enterprise Name Services 425

NIS and FNS Maps and Makefiles
FNS uses six new maps which are stored in /var/yp/ domainname directories on the
NIS master and slave servers:

� fns_host.ctx which stores host attributes and subcontext data. When this is
first created, it derives its information from the hosts.byname map.

� fns_host.ctx which stores user attributes and subcontext data. When this is
first created, it derives its information from the passwd.byname map.

� fns_org.ctx which stores organization attributes and subcontext data.

� fns_host.attr which stores host attributes for attribute based searches.

� fns_user.attr which stores user attributes for attribute based searches.

� fns_org.attr which stores organization attributes for attribute based searches.

Service and file context information for hosts, users, and the organization are stored
in the respective fns_host.ctx , fns_user.ctx , and fns_org.ctx maps. Printer
context information is stored in the same maps as other service context information.
However, the older printers.conf.byname map is still supported.

Sites are subcontexts of the organization and site context information is stored in the
fns_org.ctx map.

Note - These FNS maps should not be edited directly. You modify or work with
these maps by running the appropriate FNS commands such as fncreate ,
fndestroy , fnbind , fnunbind , fnrename , fnattr , fnlookup , and fnlist .
These commands must be run on the NIS master server. You cannot run them on
slave servers or client machines.

The FNS map files are placed in the /var/yp/ domainname directory. The NIS
Makefile in /var/yp is modified to be aware of the FNS Makefile in
/etc/fn/ domainname.

Large FNS Contexts
NIS has a 64k limit on the number of entries a NIS map can contain. If only service
and printer contexts are created for each object (host or user), that limit will be
reached when the number of users or hosts exceeds 7k. If additional contexts are
created for hosts or users, as is usually the case, the upper 64k limit will be reached
with far fewer hosts or users.

FNS solves this problem by automatically creating new maps once an old map has
reached its maximum size. Each new map is identified by adding a numeric suffix to
the map’s name. For example, when a second fns_user.ctx map is created it is
given the name fns_user_0.ctx . If a third map became necessary it would be
given the name fns_user_1.ctx . As additional maps are created, the number is
incriminated each time.

426 Solaris Naming Administration Guide ♦ May 1999

Printer Backward Compatibility
In Solaris release 2.5, FNS support for printer naming under NIS was provided for
the organization context with a map named printers.conf.byname . In the
current Solaris release, organization context printer support is maintained in the
fns_org.ctx map. That is, the fncreate_printer command now modifies the
fns_org.ctx map and not the printers.conf.byname map.

Migrating From NIS to NIS+
The fncopy command handles the FNS-related aspects of changing your underlying
enterprise-level naming service from NIS to NIS+. This command copies and
converts NIS-based FNS contexts to NIS+ based contexts.

The command syntax is:

fncopy [-i oldsvc −o newsvc] [−f filename] oldctx newctx

TABLE 23–3 fncopy Command Options

Option Description

−i oldsvc
Source naming service. Only nis or files may be specified.

−o newsvc
Target naming service. Only nisplus or nis may be specified.

−f filename
Name of file listing the FNS contexts to be copied

oldctx Old FNS context to be copied

newctx Target new FNS context

For example, to copy the contexts listed in the file /etc/sales_users from the
doc.com domain of a NIS-based naming service to the sales.doc.com domain of
an NIS+ naming service, you would enter:

fncopy -i nis -o nisplus -f /etc/sales_users org/sales.doc.com/user

FNS and Enterprise Name Services 427

Advanced FNS and File-Based Naming
Issues
This section provides specific information on the relationship between files-based
naming and FNS.

FNS Files
FNS uses new files which are stored in /var/fn directories on each machine. (While
a /var/fn directory is normally stored on each machine, you can mount and export
a central /var/fn directory via NFS.)

The new FNS files are:

� fns_host.ctx which stores host attributes and subcontext data. When this is
first created, it derives its information from the /etc/hosts file.

� fns_user.ctx which stores user attributes and subcontext data. When this is
first created, it derives its information from the /etc/passwd file.

� fns_org.ctx which stores organization attributes and subcontext data.

� fns_host.attr which stores host attributes for attribute based searches.

� fns_user.attr which stores user attributes for attribute based searches.

� fns_org.attr which stores organization attributes for attribute based searches.

� Users’ sub-context and attribute information is stored in separate /var/fn files
that are owned by each user. This allows users to modify their own data with FNS
commands. These user-specific files are named fns_user_ username.ctx where
username is the login ID of the individual user.

Service and file context information for hosts, users, and the organization are stored
in the respective fns_host.ctx , fns_user.ctx , and fns_org.ctx files. Printer
context information is stored in the same files as other service context information.

Sites are subcontexts of the organization and site context information is stored in the
fns_org.ctx file.

Note - These FNS files should not be edited directly. You modify or work with these
files by running the appropriate FNS commands such as fncreate , fndestroy ,
fnbind , fnunbind , fnrename , fnattr , fnlookup , and fnlist . When you run
these commands as root, they affect the context that they are applied to such as
hosts, site, and organization unit. When you run these commands as a user, they
affect only your own user sub-contexts.

428 Solaris Naming Administration Guide ♦ May 1999

Migrating From Files-Based Naming to NIS or
NIS+
The fncopy command handles the FNS-related aspects of changing your underlying
enterprise-level naming service from files to NIS or NIS+. This command copies and
converts files-based FNS contexts to NIS or NIS+ based contexts.

The command syntax is:

fncopy [-i oldsvc -o newsvc] [-f filename] oldctx newctx

For example, to copy the contexts listed in the file /etc/host_list to the
doc.com domain of an NIS+ naming service, you would enter:

fncopy -i files -o nisplus -f /etc/host_list //doc.com/host

Printer Backward Compatibility
In Solaris release 2.5, FNS support for printer naming for files was provided for the
organization context with a file named printers.conf.byname . In the current
Solaris release, organization context printer support is maintained in the
fns_org.ctx map. That is, the fncreate_printer command now modifies the
fns_org.ctx map and not the printers.conf.byname map.

FNS and Enterprise Name Services 429

430 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 24

Enterprise Level Contexts

This chapter describes how to individually create, and administer existing
enterprise-level contexts.

� “Creating Enterprise Level Contexts” on page 432

� “All Hosts Context” on page 434

� “Single Host Context” on page 435

� “Host Aliases” on page 435

� “All–Users Context” on page 435

� “Single User Context” on page 436

� “Service Context” on page 436

� “Printer Context” on page 437

� “Generic Context” on page 437

� “Site Context” on page 438

� “File Context” on page 439

� “Namespace Identifier Context” on page 439

� “Administering Enterprise Level Contexts” on page 440

� “Displaying the Binding” on page 440

� “Listing the Context” on page 441

� “Binding a Composite Name to a Reference” on page 443

� “Removing a Composite Name” on page 446

� “Renaming an Existing Binding” on page 446

� “Destroying a Context” on page 446

431

Creating Enterprise Level Contexts
FNS contexts are created using the fncreate command. This section describes how
to create FNS contexts individually rather than for the entire organization as
described in Solaris Naming Setup and Configuration Guide. The fncreate
command creates a context of the specified type and binds it to the given composite
name. It also creates subcontexts for the context.

The fncreate command has the following syntax,

fncreate -t context_type [-f input_file] [-o][-r reference_type][-s][-v] [-D] composite_name

TABLE 24–1 fncreate Command Options

Option Description

−−t context
Specifies the type of context to create. The context operator can be one of
org , hostname , username , host , user , service , site , nsid ,
generic , or fs

−f
Creates a context for every host or user listed in input_file. This option can
only be used with the −t username or −t hostname option and is
useful for creating contexts for a subset of users and hosts found in the
corresponding NIS+ passwd and hosts tables, respectively.

−o
Creates only the context specified. Without the −o option, subcontexts are
created according to the FNS policies.

−r
Specifies the reference_type of the generic context being created. It can only
be used with the −t generic option.

−s
Creates new contexts for composite names already in use. Otherwise, no
new contexts are created for names already bound.

−D
Displays information about the NIS+ object associated with a context each
time a context is created. This option is useful for debugging.

−v
Displays information about the creation as each context is created.

432 Solaris Naming Administration Guide ♦ May 1999

Note - If you specify the −o option when creating an organization context, the
associated host , user , and service contexts are still created but they are not
populated.

When creating contexts bound to namespace identifiers, the name without the
underscore (for example, user) is used to create the context and the name with the
underscore (for example, _user) is then bound to the reference of the newly created
context. The is done regardless of whether the name with or without the underscore
is specified in the command line.

For example, the command

fncreate -t username org/sales/_user

creates a context for org/sales/user and adds a binding for org/sales/_user
to the context of org/sales/user .

Creating an Organization Context
Use the org type to create an organization context. The composite name must be one
of the following depending on the primary naming service:

� NIS+. The name of an existing NIS+ domain (or subdomain). An NIS+ domain is
an NIS+ directory object with an org_dir subdirectory. Populated host and
passwd tables for the domain must exist in the domain’s org_dir subdirectory.

� NIS. The name of the NIS domain. Associated host and passwd maps must also
exist.

� /etc files. There is only the org// organization context when using /etc files.

Organization Context NIS+ Example
Assume the root NIS+ domain is doc.com and there is a subdomain
sales.doc.com . To create a sales organization context to correspond to the
sales subdomain, you would enter the following command:

fncreate -t org org/sales/

When the new context is created, a ctx_dir directory, if it does not already exist, is
created under the directory of the domain, sales.doc.com .

Because this example used only the −t option without the −o option, it created an
organization context for the composite name org/sales/ and, in addition, created
hostname , username , and service subcontexts for it, which in turn, created host
and user contexts, and service subcontexts for hosts and users. In effect, that is
the same as running the following commands:

Enterprise Level Contexts 433

fncreate -t hostname org/sales/host/
fncreate -t username org/sales/user/
fncreate -t service org/sales/service/

If, instead, you ran fncreate -o -t org the org context is created and the
hostname , username , and service contexts are also created, but not populated
with host and user contexts.

The org context is owned by the administrator who executed the fncreate
command, as are the hostname , username , and service subcontexts. The host
and user contexts, however, and their subcontexts are owned by the hosts or users
for which the contexts were created. In order for the administrator to subsequently
manipulate host and user contexts, the NIS_GROUPenvironment variable must have
been set accordingly at the time fncreate is executed. For example, assuming a
C-Shell, to set NIS_GROUPto fns_admins.doc.com :

rootmaster# setenv NIS_GROUP fns_admins.doc.com

All Hosts Context
The hostname type creates a hostname context in which host contexts can be created
and bound. Host contexts and their subcontexts are created for each machine name
found in the NIS+ hosts.org_dir table unless the −o option is used. When the −o
option is used, only the hostname context is created.

For example, running the command

fncreate -t hostname org/sales/host/

creates the hostname context and effectively runs the command:

fncreate -t host org/sales/host/ hname

Where hname is the name of each machine found in the hosts.org_dir table. It
also adds a binding for org/sales/_host/ that is bound to the reference of
org/sales/host/ .

The hostname context is owned by the administrator who executed the fncreate
command. A host context and its subcontexts are owned by the machine for which
the contexts were created. That is, each host owns its own host context and
subcontexts.

The −f option can be used to create contexts for a subset of the hosts found in the
NIS+ table hosts.org_dir. It creates contexts for those hosts listed in the given input
file.

434 Solaris Naming Administration Guide ♦ May 1999

Single Host Context
The host type creates the context and subcontexts for a single host. The command
automatically creates a service context for the host and a binding for fs unless the
−o option is used. When the −o option is used, only the host context is created.

For example, the command

fncreate -t host org/sales/host/antares/

creates a context for the host named antares and effectively runs the commands

fncreate -t service org/sales/host/antares/service/
fncreate -t fs org/sales/host/antares/fs/

The host context and its subcontexts are owned by the machine. In the above
example, the machine antares , with NIS+ principal name
antares.sales.doc.com , owns the contexts:

� org/sales/host/antares/

� org/sales/host/capsule/service/

� org/sales/host/capsule/fs .

The hostname context (org/sales/host in the above example) to which the
machine belongs must already exist. The machine name supplied should already
exist in the NIS+ hosts.org_dir table.

Host Aliases
Alias host names may exist in an NIS+ hosts.org_dir table. These appear in the table
as a set of hosts with the same canonical name but different alias names.

In FNS, a single host with multiple alias names has a single host context. Alias names
for that host in the hostname context are bound to the reference of that host context.

All–Users Context
The username type creates a username context in which individual user contexts
can be created and bound. User contexts and their subcontexts are created for each
user name found in the NIS+ passwd.org_dir table unless the −o option is used.
When the −o option is used, only the username context is created.

For example, running the command

fncreate -t username org/sales/user/

Enterprise Level Contexts 435

creates the username context and effectively runs the command:

fncreate -t user org/sales/user/ uname

Where uname represents the various user names that appear in the passwd.org_dir
table. It also adds a binding for org/sales/_user/ that is bound to the reference
of org/sales/user/ .

The username context is owned by the administrator who executed the fncreate
command. Individual user contexts and their subcontexts are owned by the users for
which the contexts were created. Each user owns his or her own user context and
subcontexts.

The −f option can be used to create contexts for a subset of the users found in the
NIS+ table passwd.org_dir. It creates contexts for those users listed in the given input
file.

Single User Context
The user type creates the user context and subcontexts for a user. A service
subcontext and a binding for fs are created under the user context unless the −o
option is used. When the −o option is used, only the user context is created.

For example, the command

fncreate -t user org/sales/user/jjones/

creates the user context for the user named jjones and effectively runs the
commands

fncreate -t service org/sales/user/jjones/service/
fncreate -t fs org/sales/user/jjones/fs/

The user context and its subcontexts are owned by the user for whom the contexts
were created. In the above example, the contexts created are owned by the user
jjones with NIS+ principal name jjones.sales.doc.com .

The username context (org/sales/user in the above example) to which the user
belongs must already exist. The user name supplied should already exist in the NIS+
passwd.org_dir table.

Service Context
The service type creates the service context in which service names can be
bound. There is no restriction on what type of references may be bound in a service

436 Solaris Naming Administration Guide ♦ May 1999

context. The policies depend on the applications that use the service context. For
example, a group of desktop applications may bind references for a calendar, a
telephone directory, a fax service, and a printer in a service context.

For example, the command

fncreate -t service org/sales/service/

creates a service context for the organization sales . Because the terminal atomic
name is a namespace identifier, fncreate also adds a binding for
org/sales/_service/ that is bound to the reference of org/sales/service/ .
After executing this command, names such as org/sales/service/calendar
and org/sales/service/fax can then be bound in this service context.

The service context supports a hierarchical namespace, with slash-separated
left-to-right names. The service namespace can be partitioned for different services.
Continuing with the desktop applications example, a group of plotters may be
named under the service context after the creation of the plotter context.

fncreate -t service org/sales/service/plotter

Names such as org/sales/service/plotter/speedy and
org/sales/service/plotter/color could then be bound under the service
context.

Note - Because the terminal atomic name is not a namespace identifier, no additional
binding is added (as was the case with service and _service).

The service context created is owned by the administrator who ran the fncreate
command.

Printer Context
The printer context is created under the service context of the respective
composite name.

Generic Context
The generic type creates a context for binding names used by applications.

A generic context is similar to a service context except it can have a different
reference type. The −r option is used to specify the reference type for the generic
context being created. If it is omitted, the reference type is inherited from its parent
generic context or, if the parent context is not a generic context, the reference type
used is a default generic reference type.

Enterprise Level Contexts 437

Like a service context, there is no restriction on what type of references may be
bound in a generic context. The policies depend on the applications that use the
generic context.

For example, the command

fncreate -t generic -r WIDC_comm org/sales/service/extcomm

creates a generic context with the WIDC_commreference type under the service
context of the organization sales . Names such as
org/sales/service/extcomm/modem can then be bound in this generic context.

The generic context supports a hierarchical namespace, with slash-separated
left-to-right names, which allows an application to partition its namespace for
different services. Continuing with the example above, a generic subcontext for
modemcan be created running the command

fncreate -t generic org/sales/service/extcomm/modem

Names such as org/sales/service/extcomm/modem/secure and
org/sales/service/extcomm/modem/public could then be bound under the
modemcontext.

The generic context created is owned by the administrator who ran the fncreate
command.

Site Context
The site type creates contexts in which site names can be bound.

For example, the command

fncreate -t site org/sales/site/

creates a site context. Because the terminal atomic name is a namespace identifier,
fncreate also adds a binding for org/sales/_site/ that is bound to the
reference of org/sales/site/ .

The site context supports a hierarchial namespace, with dot-separated right-to-left
names, which allows sites to be partitioned by their geographical coverage
relationships.

For example, the commands

fncreate -t site org/sales/alameda
fncreate -t site org/sales/site/alameda.bldg-5

create a site context alameda and a site subcontext alameda.bldg-5 for it.

438 Solaris Naming Administration Guide ♦ May 1999

Note - Because these terminal atomic names are not namespace identifiers, no
additional bindings are added (as was the case with site and _site).

The site context created is owned by the administrator who ran the fncreate
command.

File Context
The fs type creates a file system context (or file context) for a user or a host. For
example, the command

fncreate -t fs org/sales/user/petrova/fs/

creates the fs context for user petrova . Because the terminal atomic name is a
namespace identifier, fncreate also adds a binding for
org/sales/user/petrova/_fs/ that is bound to the reference of
org/sales/user/petrova/fs/ .

The fs context of a user is the user’s home directory as it is stored in the NIS+
passwd.org_dir table. The fs context of a host is the set of NFS file systems that the
host exports.

Use the fncreate_fs command to create file contexts for organizations and sites or
to create file contexts other than the defaults for users and hosts. See “File Contexts
Administration” on page 449, for details.

The fs context created is owned by the administrator who ran the fncreate
command.

Namespace Identifier Context
The nsid (namespace identifier) type creates a context in which namespace
identifiers can be bound.

For example, the command

fncreate -t nsid org/sales/site/alameda.bldg-5/

creates the nsid context for the site alameda.bldg-5 and permits the creation of
subcontexts such as service/ . Continuing with this example, you could then
execute the command

fncreate -t service org/sales/site/alameda.bldg-5/service/

to create the service context for alameda.bldg-5 .

Enterprise Level Contexts 439

The nsid context created is owned by the administrator who ran the fncreate
command.

Administering Enterprise Level Contexts
A number of tools are provided for examining and managing FNS contexts. The
commands and their syntax are shown in the sections that follow.

Displaying the Binding
fnlookup displays the binding of the given composite name.

fnlookup [-v][-L] composite_name

TABLE 24–2 fnlookup Command Options

Option Description

−v
Displays the binding in more detail

−L
Displays the reference to which the XFN link is bound

For example, to show the binding for the user darwin in detail, you would enter:

fnlookup -v user/darwin/
Reference type: onc_fn_user
Address type: onc_fn_nisplus

length: 52
context type: user
representation: normal
version: 0
internal name: fns_user_darwin.ctx_dir.sales.doc.com.

Suppose user/Charles.Darwin is linked to user/darwin . The first command in
the following example shows what user/Charles.Darwin is bound to (an XFN
link). The second command follows the XFN link, user/darwin , and shows what
user/darwin is bound to (the user context).

440 Solaris Naming Administration Guide ♦ May 1999

fnlookup user/Charles.Darwin
Reference type: fn_link_ref
Address type: fn_link_addr

Link name: user/darwin
fnlookup -L user/Charles.Darwin
Reference type: onc_fn_user
Address type: onc_fn_nisplus

context type: user

Listing the Context
fnlist lists the contents of the context identified by the given name.

fnlist [-lv] [name]

TABLE 24–3 fnlist Command Options

Option Description

−v
Displays the binding in more detail

−l
Displays the bindings of the names bound in the named context

For example, to display the bindings under the user context:

fnlist user/
Listing ’user/’:
jjones
julio
chaim
James.Jones

If no name is given, the command lists the contents of the initial context.

fnlist
Listing ’’:
_myorgunit
...
_myself
thishost
myself
_orgunit
_x500
_host

(continued)

Enterprise Level Contexts 441

(Continuation)

_thisens
myens
thisens
org
orgunit
_dns
thisuser
_thishost
myorgunit
_user
thisorgunit
host
_thisorgunit
_myens
user

When the −l option is given, the bindings of the names bound in the named context
are displayed.

fnlist -l user/
Listing bindings ’user/’:
name: julio
Reference type: onc_fn_user
Address type: onc_fn_nisplus

context type: user
name: chaim
Reference type: onc_fn_user
Address type: onc_fn_nisplus

context type: user
name: James.Jones
Reference type: fn_link_ref
Address type: fn_link_addr

Link name: user/jjones
name: jjones
Reference type: onc_fn_user
Address type: onc_fn_nisplus

context type: user

When the −v option is given in conjunction with the −l option, the bindings are
displayed in detail.

fnlist -lv user/
Listing bindings ’user/’:
name: julio
Reference type: onc_fn_user
Address type: onc_fn_nisplus

length: 52
context type: user
representation: normal
version: 0

442 Solaris Naming Administration Guide ♦ May 1999

(Continuation)

internal name: fns_user_julio.ctx_dir.sales.doc.com.
name: chaim
Reference type: onc_fn_user
Address type: onc_fn_nisplus

length: 52
context type: user
representation: normal
version: 0
internal name: fns_user_chaim.ctx_dir.sales.doc.com.

name: James.Jones
Reference type: fn_link_ref
Address type: fn_link_addr

length: 11
data: 0x75 0x73 0x65 0x72 0x2f 0x6a 0x6a 0x6f 0x6e 0x65

user/jjones
name: jjones
Reference type: onc_fn_user
Address type: onc_fn_nisplus

length: 52
context type: user
representation: normal
version: 0
internal name: fns_user_jjones.ctx_dir.sales.doc.com.

Binding a Composite Name to a Reference
fnbind allows you to bind a composite name to a reference.

There are two uses of this command.

� The first usage allows the user to bind the reference of an existing name to a new
name. (See below.)

� The second usage allows the user to bind a reference constructed using arguments
in the command line to a name. (See “Constructing a Reference on the Command
Line ” on page 444.)

Binding an Existing Name to a New Name
The syntax of fnbind for binding existing names to new names is:

fnbind [-s][-v][-L] oldname newname

Enterprise Level Contexts 443

TABLE 24–4 fnbind Command Options (Binding Names)

Option Description

oldname The existing composite name

newname The new name to which you are binding the old name

−s
Supersedes any existing binding of the original composite name

−v
Prints out the reference used for the binding

−L
Creates an XFN link using name and binding it to new_name

For example, to bind the name user/julio/service/printer to the reference of
myorgunit/service/printer you would enter:

fnbind myorgunit/service/printer user/julio/service/printer

If the given newname is already bound, fnbind −s must be used or the operation
will fail. In the above example, if user/julio/service/printer is already
bound, the −s option must be used to overwrite the existing binding with that of
myorgunit/service/printer as shown below:

fnbind -s myorgunit/service/printer user/julio/service/printer

The −v option prints out the reference used for the binding.

fnbind -v myorgunit/service/printer user/julio/service/printer
Reference type: onc_printers
Address type: onc_fn_printer_nisplus

The following command constructs an XFN link out of user/jjones and binds it to
the name user/James.Jones :

fnbind -L user/jjones user/James.Jones

Similarly, to create a link from user/julio/service/printer to
myorgunit/service/printer you would enter:

fnbind -sL myorgunit/service/printer user/julio/service/printer

Constructing a Reference on the Command Line
The syntax of fnbind for building a reference on the command line is:

444 Solaris Naming Administration Guide ♦ May 1999

fnbind -r [-s] [-v] newname [-O | -U] reftype {[-O | -U] | addresstype [-c|-x] addresscontents}+

TABLE 24–5 fnbind Command Options (Reference Construction)

Option Description

newname The new name for which you are constructing a reference

reftype The type of reference you are creating. Unless the −O or −U options are
used, FN_ID_STRING is used as the indentifier for reftype.

addresstype The type of address you are creating. Unless the −O or −U options are
used, FN_ID_STRING is used as the indentifier for addresstype.

addresscontents The address of the reference you are creating. Unless the −c or −x
options are used, the address is stored as an XDR-encoded string.

−s
Supersedes any existing binding of the original composite name

−v
Prints out the reference used for the binding

−c
Stores address contents without XDR encoding

−x
Interprets address contents as a hexadecimal input string and store it as
is

−r
Creates a reference with a specified type and binds the reference to a
name specified on the command line

−O
Interprets and stores type string as ASN.1 dot-separated integer list

−U
Interprets and stores type string as a DCE UUID

For example, to bind the name thisorgunit/service/calendar to the address
contents of staff@cygnus with a reference type of onc_calendar and and an
address type onc_cal_str you would enter:

fnbind -r thisorgunit/service/calendar onc_calendar onc_cal_str staff@cygnus

By default, the address contents supplied in the command line is XDR-encoded
before being stored in the reference. If the −c option is given, the address contents

Enterprise Level Contexts 445

are stored in normal, readable characters, not as an XDR-encoded string. If the −x
option is given, the address contents supplied in the command line are interpreted as
a hexadecimal string and stored (and not XDR-encoded).

By default, the reference and address types of the reference to be constructed uses
the FN_ID_STRING identifier format. If the −O option is given, the identifier format
is FN_ID_ISO_OID_STRING , an ASN.1 dot-separated integer list string. If the −U
option is given, the identifier format is FN_ID_DCE_UUID, a DCE UUID in string
form.

Note - For more information on ASN.1, see ISO 8824: 1990, Information Technology
— Open Systems Interconnection — Specification of Abstract Syntax Notation One
(ASN.1). For more information on DCE UUID see X/Open Preliminary Specification,
October 1993, X/Open DCE: Remote Procedure Call (ISBN: 1-872630-95-2).

For example, to bind to the name thisorgunit/service/nx a reference with a
hexadecimal string as the address contents and OIDs as reference and address types,
you would enter:

fnbind -r thisorgunit/service/nx -O 1.2.99.6.2.1 -O 1.2.99.6.2.3
-x ef12eab67290

Removing a Composite Name
fnunbind removes the given composite name from the namespace. Note that this
does not remove the object associated with the name; it only unbinds the name from
the object.

For example, to remove the binding associated with the
name user/jjones/service/printer/color , you would enter:

fnunbind user/jjones/service/printer/color

Renaming an Existing Binding
The fnrename command renames an existing binding.

For example, to rename the binding of clndr to calendar , in the context named by
user/jjones/service/ you would enter:

fnunbind user/jjones/service/printer/color

Destroying a Context
fndestroy removes the given composite name from the namespace and destroys
the context named by the composite name.

446 Solaris Naming Administration Guide ♦ May 1999

For example, to unbind the name user/jones/ from the namespace and destroys
the context named by user/jjones/ you would enter:

fndestroy user/jjones/

If the composite name identifies a context to be removed, the command fails if the
context contains subcontexts.

Enterprise Level Contexts 447

448 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 25

Administering File Contexts

This chapter describes how to administer application specific contexts.

� “File Contexts Administration” on page 449

� “Creating a File Context With fncreate_fs ” on page 450

� “Advanced Input Formats” on page 453

� “Backward Compatibility Input Format ” on page 454

File Contexts Administration
File contexts may be:

� Created using the fncreate_fs command (see “Creating a File Context With
fncreate_fs ” on page 450).

� Inspected using the fnlist command (see “Listing the Context” on page 441) or
the fnlookup command (see “Displaying the Binding” on page 440).

� Pruned or destroyed using fnunbind command (see “Removing a Composite
Name” on page 446) or the fndestroy command (see “Destroying a Context” on
page 446).

449

Creating a File Context With
fncreate_fs
The fncreate_fs command creates file contexts for organizations and sites. It may
also be used to override the default file contexts for users and hosts that are created
by the fncreate command.

There are two methods of using the fncreate_fs command.

� Input file. File context bindings may be provided by an input file (See “Creating
File Contexts With an Input File” on page 451)

� Command line. File context bindings may be created from the command line (See
“Creating File Contexts With Command-line Input” on page 452).

The two methods of fncreate_fs have the following syntax:

fncreate_fs [-v] [-r] -f file composite_name
fncreate_fs [-v] [-r] composite_name [options] [location...]

TABLE 25–1 fncreate_fs Command Options

Option Description

composite_name The composite name of the file context.

−f file Use an input file named file.

options Mount options

location Mount location.

−v
Sets verbose output, displaying information about the contexts
being created and modified.

−r
Replaces the bindings in the context named by composite_name
—and all of its subcontexts—with only those specified in the
input. This is equivalent to destroying the context (and,
recursively, its subcontexts), and then running fncreate_fs
without this option. The −r option should be used with care.

450 Solaris Naming Administration Guide ♦ May 1999

The fncreate_fs command manipulates FNS contexts and bindings of the
onc_fn_fs reference type. It uses an address of type onc_fn_fs_mount to
represent each remote mount point. The data associated with an address of this type
are the corresponding mount options and locations in a single, XDR-encoded string.

Creating File Contexts With an Input File
The input file supplies the names and values to be bound in the context of
composite_name . Its format is based upon and similar, but not identical, to the
format of indirect automount maps. The input file contains one or more entries with
the form:

name [options] [location...]

Where:

� name is the reference name. The name field may be a simple atomic name or a
slash-separated hierarchical name. It may also be “. ” (dot), in which case the
reference is bound directly to composite_name.

� options are mount options, if any. The options field begins with a hyphen (“–”). This
is followed by a comma-separated list (with no spaces) of the mount options to
use when mounting the directory. These options also apply to any subcontexts of
composite_name/name that do not specify mount options of their own.

� location is the mount location. The location field specifies the host or hosts that
serve the files for composite_name/name. In a simple NFS mount, location takes the
form:

host: path

� Where host is the name of the server from which to mount the file system and path
is the path name of the directory to mount.

For each entry a reference to the mount locations and the corresponding mount
options is bound to the name composite_name/name.

If options and location are both omitted, then no reference is bound to
composite_name/name. Any existing reference is unbound.

For example, suppose you want kuanda ’s file system to be an NFS mount of the
directory /export/home/kuanda from host altair as shown in Figure 22–4. The
command would be run as follows:

% fncreate_fs -f infile user/kuanda/fs

With infile containing:

Administering File Contexts 451

. altair:/export/home/kuanda

To set up a more complex file system distributed over more than one server as
shown in Figure 22–5, run the command

% fncreate_fs -f infile org/sales/fs

with infile containing

tools/db altair:/export/db
project altair:/export/proj
project/lib altair:/export/lib
project/src deneb:/export/src

To change the NFS mounts for project and its subcontexts src and lib to be
read-only, you can change infile as follows:

tools/db svr1:/export/db
project -ro svr1:/export/projproject/lib altair:/export/lib
project/src svr2:/export/src

The −ro is unnecessary in the third and fourth lines because src and lib are
subcontexts of project , they will inherit the −ro mount option from above.

The following input file would make all of the mounts read-only except for
org/sales/fs/project/src .

. -ro
tools/db svr1:/export/db
project svr1:/export/proj
project/lib altair:/export/lib
project/src -rw svr2:/export/src

Creating File Contexts With Command-line Input
The fncreate_fs command also allows the binding description to be provided on the
command line:

fncreate_fs composite_name [mmount_options] [mount_location ...]

This is equivalent to using the input file form of the command but entering the
individual bindings from your keyboard. The previous example in which kuanda ’s
file system was set could be set from the command line as follows:

% fncreate_fs user/kuanda/fs altair:/export/home/kuanda

Similarly, the hierarchy illustrated in Figure 22–5 could have been set up by running
the sequence of commands:

452 Solaris Naming Administration Guide ♦ May 1999

% fncreate_fs org/sales/fs/tools/db altair:/export/db
% fncreate_fs org/sales/fs/project altair:/export/proj
% fncreate_fs org/sales/fs/project/lib altair:/export/lib
% fncreate_fs org/sales/fs/project/src deneb:/export/src

To make all three of the mounts read-only, you would run this command:

% fncreate_fs org/sales/fs -ro

Advanced Input Formats
The following two sections apply to both input file and command-line input formats.

Multiple Mount Locations
Multiple location fields may be specified for NFS file systems that are exported from
multiple, functionally equivalent locations:

% fncreate_fs org/sales/fs altair:/sales cygnus:/sales

The automounter will attempt to choose the best server from among the alternatives
provided. If several locations in the list share the same path name, they may be
combined using a comma-separated list of host names:

% fncreate_fs org/sales/fs altair,cygnus:/sales

The hosts may be weighted, with the weighting factor appended to the host name as
an integer in parentheses: the lower the number, the more desirable the server. The
default weighting factor is zero (most desirable). Negative numbers are not allowed.

The following example illustrates one way to indicate that cygnus is the preferred
server:

% fncreate_fs org/sales/fs altair(2),cygnus(1):/sales

Variable Substitution
Variable names, prefixed by $, may be used in the options or location fields of
fncreate_fs . For example, a mount location may be given as:

altair:/export/$CPU

Administering File Contexts 453

The automounter will substitute client-specific values for these variables when
mounting the corresponding file systems. In the above example, $CPUis replaced by
the output of uname −p; for example, sparc .

Backward Compatibility Input Format
For additional compatibility with automount maps, the following input file format is
also accepted by fncreate_fs :

name [mount_options] [mount_location ...] \
/ offset1 [mount_options1] mount_location1 ... \
/ offset2 [mount_options2] mount_location2 ... \
...

Where each offset field is a slash-separated hierarchy. The backslash (\) indicates the
continuation of a single long line. This is interpreted as being equivalent to:

name [mount_options] [mount_location ...] \
name/ offset1 [mount_options1] mount_location1 ... \
name/ offset2 [mount_options2] mount_location2

The first line is omitted if both mount_options and mount_location are omitted. This
format is for compatibility only. It provides no additional functionality, and its use is
discouraged.

454 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 26

FNS and Global Naming Systems

This chapter describes two global naming systems (DNS and X.500/LDAP) and how
to federate them under FNS.

� “FNS and Global Naming Systems” on page 455

� “Obtaining the Root Reference” on page 456

� “Federating Under DNS” on page 458

� “Federating Under X.500/LDAP” on page 459

FNS and Global Naming Systems
See “Global Naming Services” on page 378 for overview and background
information on the relationship between FNS and global naming services.

FNS supports federation of enterprise naming systems into the global naming
systems, DNS and X.500/LDAP. This chapter describes the procedures for federating
NIS+ with DNS and X.500. In general, the procedures involve

� Determining the NIS+ root reference for your NIS+ hierarchy

� Adding this information in the format required by the global naming system

Note - You can only federate a global naming service if your enterprise-level name
service is NIS+ or NIS. If you are using a files-based name service for your
enterprise, you cannot federate either DNS or X.500/LDAP.

455

Obtaining the Root Reference
To federate an enterprise naming service under DNS or X.500/LDAP, information
must be added to these respective naming systems to enable access to and from the
enterprise and the global Internet outside of the enterprise. This information is the
root reference, which consists of network address information describing how to reach
the top of a particular enterprise namespace.

The root reference consists of a single address which contains a single, XDR-encoded
string. The address type and content varies according to the enterprise level name
service you are using: NIS+ or NIS.

NIS+ Root Reference
When your enterprise level name service is NIS+, the root reference address type is:
onc_fn_nisplus_root . There are two required, and one optional, elements in a
root reference network address. The elements are separated by white spaces:

root-domain server [server_IP_address]

TABLE 26–1 NIS+ Root Reference

Address Element Description

root_domain
The fully qualified name of the NIS+ root domain (trailing
dot required).

server
The host name of one of the NIS+ servers (master or replica)
serving nis+_root_domain.

server_IP_address
The IP address of nis+server. This is optional if the address of
nis+server is expected to be known. This means it should be
available through one of the name services listed in the /
etc/nsswitch.conf file.

For example, suppose that the NIS+ root domain is doc.com. (notice the trailing
dot), and that it can be reached using the host nismaster.doc.com . The root
reference would be:

doc.com. nismaster.doc.com

456 Solaris Naming Administration Guide ♦ May 1999

The IP address of the server is not given in the example above because it is expected
to be available through other means. If for some reason that IP address was not
available through other means, the root reference would look like:

doc.com. nismaster.doc.com 123.123.123.33

NIS Root Reference
When your enterprise level name service is NIS, the root reference address type is:
onc_fn_nis_root . There are two required, and one optional, elements in a root
reference network address. The elements are separated by white spaces:

root_domain server [server_IP_address]

TABLE 26–2 NIS Root Reference

Address Element Description

root_domain The fully qualified name of the NIS domain (trailing slash
required).

server The host name of one of the NIS servers (master or slave)
serving root_domain.

server_IP_address The IP address of nis-server. This is optional if the address of
nis-server is expected to be known. This means it should be
available through one of the name services listed in the /etc/
nsswitch.conf file.

For example, suppose that the NIS domain is doc.com , and that it can be reached
using the host ypmaster.doc.com . The root reference would be:

doc.com/ ypmaster.doc.com

The IP address of the server is not given in the example above because it is expected
to be available through other means. If for some reason that IP address was not
available through other means, the root reference would look like:

doc.com/ ypmaster.doc.com 123.123.123.37

FNS and Global Naming Systems 457

Federating Under DNS
This section describes the steps required to add TXT (text) records for a subordinate
enterprise naming system implemented with NIS+ or NIS. To federate a subordinate
naming system in DNS, you need to add reference information into DNS describing
how to reach the subordinate naming system’s root reference.

1. Obtain the root reference.

See “Obtaining the Root Reference” on page 456.

2. Add a root reference TXT record to the DNS loopback file.

By default, this manual uses the name /etc/named.local for this file (other
common names for this file are domain.127.0.0 or db.127.0.0).

The root reference TXT record has the following format:

For NIS+

TXT ‘‘XFNNISPLUS rootdomain server [server_IP_address]’’

For example:

TXT ‘‘XFNNISPLUS doc.com. nismaster.doc.com’’

For NIS

TXT ‘‘XFNNIS rootdomain server [server_IP_address]’’

For example:

TXT ‘‘XFNNIS doc.com/ ypmaster.doc.com’’

The TXT record must be associated with a DNS domain that includes an NS
(name server) record entry. The following is an example of a DNS domain with
reference information for NIS+ bound in it.

$ORIGIN doc.com
@ IN SOA foo bar.eng.doc.com

(
100 ;; Serial
3600 ;; Refresh
3600 ;; Retry
3600 ;; Expire
3600 ;; Minimum
)
NS nshost

(continued)

458 Solaris Naming Administration Guide ♦ May 1999

(Continuation)

TXT "XFNNISPLUS doc.com. nismaster 123.123.123.33"
nshost IN A 133.33.33.34

For more information about DNS files, see “DNS Configuration and Data Files”
on page 488.

3. After adding the TXT record into the DNS table, either restart the DNS server
or send it a signal to reread the table.

kill -HUP pid

Where pid is the process ID number of in.named .

For further information on how DNS TXT records are used for XFN references,
see “DNS Text Record Format for XFN References ” on page 631.

Federating Under X.500/LDAP
In order to federate a subordinate naming system (either NIS+ or NIS) in X.500/
LDAP:

� Root reference information must be added into X.500 describing how to reach the
subordinate naming system.

� An X.500 client API must be specified.

Specifying an X.500 Root Reference
1. Obtain the NIS+ root reference for your NIS+ hierarchy.

See “Obtaining the Root Reference” on page 456.

2. Create an X.500 entry that supports XFN reference attributes.

For example, the following command creates a new X.500 entry called
c=us/o=doc with the object classes top , organization , and
XFN-supplement (1.2.840.113536.25). The XFN-supplement object class allows

FNS and Global Naming Systems 459

the c=us/o=doc entry to store reference information for a subordinate naming
system.

fnattr -a .../c=us/o=doc object-class \
top organization XFN-supplement

If the X.500 entry already existed and was not defined with the
XFN-supplement object class, it must be removed and re-created with the
additional object class. Otherwise, it will not be able to hold reference information
about the subordinate naming system.

3. Add the reference information about the subordinate system to the entry.

After creating the X.500 entry, you can then add information about the
subordinate system by binding the appropriate root reference to the named entry.

For example, if your subordinate naming system is NIS+, and the NIS+ server
you want to use is nismaster , your would enter:

fnbind -r .../c=us/o=doc/ onc_fn_enterprise onc_fn_nisplus_root \
"doc.com. nismaster

If your subordinate naming system is NIS, and the NIS server you want to use is
ypmaster , your would enter:

fnbind -r .../c=us/o=doc/ onc_fn_enterprise onc_fn_nis_root \
"doc.com/ ypmaster"

These examples bind the reference for the NIS+ or NIS hierarchy with the root
domain name doc.com , to the next naming system pointer (NNSP) of the X.500
entry c=us/o=doc , thus linking the X.500 namespace with the doc.com .
namespace.

The address format used is that of the root reference described in “Obtaining the
Root Reference” on page 456. Note the use of the trailing slash in the name
argument to fnbind , .../c=us/o=doc/ , to signify that the reference is being
bound to the NNSP of the entry, rather than to the entry itself.

For further information on X.500 entries and XFN references, see “X.500 Attribute
Syntax for XFN References ” on page 633.

460 Solaris Naming Administration Guide ♦ May 1999

Specifying an X.500 Client API
An X.500 client API is required in order to access X.500 using FNS. You can use one
of two different clients:

� XDS/XOM API. The XDS/XOM API must be installed. It is exported from the
/opt/SUNWxds/lib/libxomxds.so shared object. Consult “Getting started
with the SunLink X.500 Client Toolkit” for details on SunSoft’s X.500 product.

� LDAP (Lightweight Directory Access Protocol) API. The LDAP API is automatically
installed as part of Solaris Release 2.6.

The API that you use is specified in each machine’s /etc/fn/x500.conf file. This
file contains configuration information for X.500 and LDAP. This file can be edited
directly. The default x500.conf file contains two entries:

x500-access: xds ldap
ldap-servers: localhost ldap

Where localhost and ldap are the IP addresses or hostnames of one or more LDAP
servers.

The first entry specifies the order in which X.500 accesses APIs. In the example
above, X.500 will first try to use XDS/XOM. If XDS/XOM is not available, it will
default to using LDAP. If the entry read: x500-access: ldap xds , X.500 would
use LDAP and only fall back on XDS if LDAP were not available.

The second entry lists the IP addresses or hostnames of servers running LDAP. Each
server is tried in turn until a successful LDAP connection is achieved. In the example
above, the localhost is tried first. If LDAP is not available on that server, the next one
is tried.

FNS and Global Naming Systems 461

462 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 27

Administering FNS Attributes

This chapter describes FNS attributes and how to administer them. .

� “Attributes Overview” on page 463

� “Examining Attributes” on page 463

� “Updating Attributes ” on page 466

Attributes Overview
Attributes may be applied to named objects. Attributes are optional. A named object
can have no attributes, one attribute, or multiple attributes.

Each attribute has a unique attribute identifier, an attribute syntax, and a set of zero
or more distinct attribute values.

XFN defines the base attribute interface for examining and modifying the values of
attributes associated with existing named objects. These objects can be contexts or
any other type of object. Associated with a context are syntax attributes that describe
how the context parses compound names.

The extended attribute interface contains operations that search for specific attributes
and that create objects and their associated attributes.

Examining Attributes
Search for attributes with the fnsearch command.

463

The syntax of the fnsearch command is

fnsearch [-ALlv] [-n max] [-s scope] name [-a ident]... [-O|-U] filter_expr [filter_arg]

TABLE 27–1 fnsearch Command Options

Option Description

−n max Display only max number of objects.

−s scope
Set the scope of the search

−a ident
Display only those attributes that match ident.

name
Composite name

filter_expr
Boolean, logical, grouping, relational, and comparison operators
(see Table 27–2)

filter_arg
Arguments for filter expressions (see Table 27–2]

−A
Consult only the authoritative source.

−L
Follow XFN links.

−l
Display the object references for the matching objects.

−v
Verbose. Display detailed object references for the matching
objects.

−O
Use an OSI OID as the identifier

−U
Use a DCE UUID as the identifier

464 Solaris Naming Administration Guide ♦ May 1999

Searching for Objects Associated With an Attribute
With the fnsearch command, you can search for objects that are associated with the
attributes you choose.

For example, to find all the objects that are associated with the attribute for_sale
in orgunit/sales/site/ , you would enter the following command:

% fnsearch orgunit/sales/site/ for_sale

Customizing Attribute Searches
You can also use all the following in filter expressions in your search patterns.

TABLE 27–2 fnsearch Filter Expression Operators

Filter Expression Operator Symbols and Forms

Logical operators or , and , not

Parentheses for grouping ()

Relational operators: Compare
an attribute to a supplied value

== True if at least one attribute value is equal to the supplied value. != True
if none of the attribute values are equal to the supplied value. < True if at
least one attribute value is less than the supplied value. <= True if at least
one attribute value is less than or equal to the supplied value. > True if at
least one attribute value is greater than the supplied value. >= True if at
least one attribute value is greater than or equal to the supplied value. ~=
True if at least one attribute value matches the supplied value according to
some context-specific approximate matching criterion. This criterion must
subsume strict equality.

Example: % fnsearch name "not (make == ’olds’ and year == 1983)"

Substitution tokens:

Helpful when writing shell
scripts; allow the use of OSI
OIDs and DCE UUIDs when
used with the −Oand −U options

%afor attribute

%s for string

%i for identifier

%v for attribute value (only fn_attr_syntax_ascii is currently
supported)

Example: The following three examples are equivalent.

% fnsearch name "color == ’red’"

% fnsearch name "%a == ’red’" color

% fnsearch name "%a == %s" color red

Administering FNS Attributes 465

TABLE 27–2 fnsearch Filter Expression Operators (continued)

Filter Expression Operator Symbols and Forms

Wild card strings * , * string, string* , str* ing, %s*

Extended operators ’name’ (wildcarded_string), ’reftype’ (identifier), ’addrtype’ (identifier)

Example: Search for objects with names starting with "Bill" and IQ attributes over 80.

% fnsearch name "’name’(’bill’*) and IQ > 80"

See the fnsearch man page for detailed information about creating search patterns.

Updating Attributes
The fnattr command lets you update and examine attributes associated with FNS
named objects. You can perform four attribute operations with the fnattr
command:

� Add an attribute:

fnattr -a [-s] name [-O|-U] identifier values

� Delete an attribute:

fnattr -d name [[-O|-U] identifier [values]]

� Modify an attribute:

fnattr -m name [-O|-U identifier oldvalue newvalue

� List an attribute:

fnattr -l name [[-O|-U] identifier

466 Solaris Naming Administration Guide ♦ May 1999

TABLE 27–3 fnattr Command Options

Option Description

name Composite name.

identifier Attribute name.

values One or more attributes values

oldvalue The attribute value that you want to change.

newvalue The new attribute value.

−aa Add (create) a new attribute

−d
Delete an attribute

−m
Change (modify) an attribute

−l
List attribute values

−s
Add in “supersede” mode. Removes any existing values for the
identifier attribute and creates new attribute values.

−l
List attributes and values.

−O
Use an OSI OID as the identifier

−U
Use a DCE UUID as the identifier

In each of these cases, the identifier format is FN_ID_STRING, unless the option −O
or −U is used.

Adding an Attribute
The −a option is for adding an attribute or adding a value to an attribute. Specify the
composite name the attribute is associated with, the attribute identifier, and the
values to add.

Administering FNS Attributes 467

fnattr -a [-s] name [-O | -U] identifier value1 [value2+]

The following example adds the attribute identifier model and the value hplaser to
thisorgunit/service/printer .

fnattr -a thisorgunit/service/printer model hplaser

The −s option means “add in supersede” mode. If an attribute with the specified
identifier already exists, −s removes all of its values and replaces them with the
values added. If this option is omitted, the resulting values for the specified attribute
includes the existing values and the new values added.

fnattr -as thisorgunit/service/printer model hplaser

The example above will first remove any existing values associated with model and
add hplaser as the value.

Deleting an Attribute
To delete an attribute associated with an FNS named object, use the −d option.

fnattr -d name [[-O | -U] identifier value1 [value2+]]]

You can control what to delete:

� Name only. If only the composite name is specified and no attribute identifier is
specified, all the attributes associated with the named object are removed.

� Name and identifier only. If only the composite name and an attribute identifier is
specified, but no attribute values are specified, the entire attribute identified by
identifier is removed.

� Name, identifier, and values. If the composite name, an attribute identifier, and one
or more attribute values are specified, then only those values are removed from
the attribute. (Removal of the last remaining value of an attribute is the same as
removing the attribute itself.)

For example, to delete all the attributes associated with
thisorgunit/service/printer .

fnattr -d thisorgunit/service/printer

Listing an Attribute
The −l option is for listing attributes and their values.

fnattr -l name [[-O | -U] identifier]

For example to list the values of the model attribute of
thisorgunit/service/printer .

468 Solaris Naming Administration Guide ♦ May 1999

fnattr -l thisorgunit/service/printer model
laser
postscript

If an identifier is not specified, all the attributes associated with the named object are
displayed.

Modifying an Attribute
The −moption lets you modify an attribute value.

fnattr -m name [-O | -U] identifier old_value new_value

For example, to replace the value postscript with laser you would enter:

fnattr -m thisorgunit/service/printer model postscript laser

Only the specified values are affected. Other attributes and values associated with
the name are not affected.

Other Options
The −O option assumes the format of the attribute identifier is an ASN.1
dot-separated integer string list (FN_ID_ISO_OID_STRING).

The −U option assumes the format of the attribute identifier is a DCE UUID string
form (FN_ID_DCE_UUID).

Administering FNS Attributes 469

470 Solaris Naming Administration Guide ♦ May 1999

PART VI Administering DNS

This part describes the Domain Name System (DNS) and how to administer it.

� Chapter 28

� Chapter 29

CHAPTER 28

Introduction to DNS

This chapter describes the structure and provides an overview of the Domain Name
System (DNS).

� “DNS Basics” on page 474

� “Introducing the DNS Namespace” on page 478

� “Zones” on page 483

� “DNS Servers” on page 484

� “How DNS Affects Mail Delivery” on page 487

� “DNS Configuration and Data Files” on page 488

� “Names of DNS Data Files” on page 488

� “Data File Resource Record Format” on page 493

� “Standard Resource Record Format” on page 493

� “Special Resource Record Characters” on page 494

� “Control Entries” on page 495

� “Resource Record Types” on page 496

� “Solaris DNS BIND Implementation” on page 503

See Solaris Naming Setup and Configuration Guide for information on initially setting
up and configuring DNS service.

Note - One of the most common, and important, uses of DNS is connecting your
network to the global Internet. In order to connect to the Internet, your network IP
address must be registered with whomever is administering your parent domain.
Who that administrator is varies according to your geographic location and type of
parent domain.

473

DNS Basics
The Domain Name System (DNS) is an application–layer protocol that is part of the
standard TCP/IP protocol suite. This protocol implements the DNS name service,
which is the name service used on the Internet.

This section introduces the basic DNS concepts. It assumes that you have some
familiarity with network administration, particularly TCP/IP, and some exposure to
other name services, such as NIS+ and NIS.

Refer to Solaris Naming Setup and Configuration Guide for information regarding
initial setup and configuration of DNS.

Note - DNS, NIS+, NIS, and FNS provide similar functionality and sometimes use
the same terms to define different entities. Thus, this chapter takes care to define
terms like domain and name server according to their DNS functionality, a very
different functionality than NIS+ and NIS domains and servers.

Name-to-Address Resolution
Though it supports the complex, world-wide hierarchy of computers on the Internet,
the basic function of DNS is actually very simple: providing name-to-address resolution
for TCP/IP-based networks. Name-to-address resolution, also referred to as
“mapping,” is the process of finding the IP address of a computer in a database by
using its host name as an index.

Name-to-address mapping occurs when a program running on your local machine
needs to contact a remote computer. The program most likely will know the host
name of the remote computer but may not know how to locate it, particularly if the
remote machine is in another company, miles from your site. To get the remote
machine’s address, the program requests assistance from the DNS software running
on your local machine, which is considered a DNS client.

Your machine sends a request to a DNS name server, which maintains the distributed
DNS database. The files in the DNS database bear little resemblance to the NIS+ Host
Table or even the local /etc/hosts file, though they maintain similar information:
the host names, IP addresses, and other information about a particular group of
computers. The name server uses the host name your machine sent as part of its
request to find or “resolve” the IP address of the remote machine. It then returns this
IP address to your local machine IF the host name is in its DNS database.

Figure 28–1 shows name-to-address mapping as it occurs between a DNS client and
a name server, probably on the client’s local network.

474 Solaris Naming Administration Guide ♦ May 1999

DNS Client
Name Server

Sends host name casbah.manf.ajax.com

Returns IP address 192.200.21.165

casbah... 192.200.21.165

Figure 28–1 Name to Address Resolution

If the host name is not in that name server’s DNS database, this indicates that the
machine is outside of its authority, or, to use DNS terminology, outside the local
administrative domain. Thus, each name server is spoken of as being “authoritative”
for its local administrative domain.

Fortunately, the local name server maintains a list of host names and IP addresses of
root domain name servers, to which it will forward the request from your machine.
These root name servers are authoritative for huge organizational domains, as
explained fully in “DNS Hierarchy and the Internet” on page 479. These hierarchies
resemble UNIX file systems, in that they are organized into an upside-down tree
structure.

Each root name server maintains the host names and IP address of top level domain
name servers for a company, a university, or other large organizations. The root
name server sends your request to the top-level name servers that it knows about. If
one of these servers has the IP address for the host you requested, it will return the
information to your machine. If the top-level servers do not know about the host you
requested, they pass the request to second-level name servers for which they
maintain information. Your request is then passed on down through the vast
organizational tree. Eventually, a name server that has information about your
requested host in its database will return the IP address back to your machine.

Figure 28–2 shows name-to-address resolution outside the local domain.

Introduction to DNS 475

DNS Client

1. Sends host name casbah.manf.ajax.com

Root Name Server

ajax.com 192.200.21.1

Name Server fairfax.edu

Sends host name casbah.manf.ajax.com

Returns IP address
 192.200.21.165

Domain fairfax.edu

Name Server ajax.com

manf.ajax.com 192.200.21.50

Name Server manf.ajax.com

casbah 192.200.21.165

Com Organizational
Domain

for ajax top-level domain

for manf.ajax second-level
domain

No entry for casbah

No entry for casbah...

Entry for Server com
Entry for Server org
Entry for Server mil

2.

3.

4.

5.

6.

7. IP address 192.200.21.165 returned

Figure 28–2 Name to Address Resolution for a Remote Host

DNS Administrative Domains
From a DNS perspective, an administrative domain is a group of machines that are
administered as a unit. Information about this domain is maintained by at least two
name servers; they are “authoritative” for the domain. The DNS domain is a purely
logical grouping of machines. It could correspond to a physical grouping of machines,
such as all machines attached to the Ethernet in a small business. But a local DNS
domain just as likely could include all machines on a vast university network that
belong to the computer science department or to university administration.

For example, suppose the Ajax company has two sites, one in San Francisco and one
in Seattle. The Retail.Sales.Ajax.com. domain might be in Seattle and the
Wholesale.Sales.Ajax.com. domain might be in San Francisco. One part of the
Sales.Ajax.com. domain would be in one city, the other part in the second city.

Each administrative domain must have its own unique subdomain name. Moreover,
if you want your network to participate in the Internet, the network must be part of
a registered administrative domain. The section “Joining the Internet” on page 480
has full details about domain names and domain registration.

476 Solaris Naming Administration Guide ♦ May 1999

in.named and DNS Name Servers
As mentioned previously, name servers in an administrative domain maintain the
DNS database. They also run the in.named daemon, which implements DNS
services, most significantly, name-to-address mapping. in.named is a public domain
TCP/IP program and included with the Solaris operating environment.

Note - The in.named daemon is also called the Berkeley Internet Name Domain
service, or BIND, because it was developed at the University of California at Berkeley.

There are three types of DNS name servers:

� Primary server

� Secondary server

� Cache-only server

Each domain must have one primary server and should have at least one secondary
server to provide backup. “Zones” on page 483 explains primary and secondary
servers in detail.

DNS Clients and the Resolver
To be a DNS client, a machine must run the resolver. The resolver is neither a daemon
nor a single program; rather, it is a set of dynamic library routines used by
applications that need to know machine names. The resolver’s function is to resolve
users’ queries. To do that, it queries a name server, which then returns either the
requested information or a referral to another server. Once the resolver is configured,
a machine can request DNS service from a name server.

When a machine’s /etc/nsswitch.conf file specifies hosts: dns (or any other
variant that includes dns in the hosts line), the resolver libraries are automatically
used. If the nsswitch.conf file specifies some other name service before dns , that
name service is consulted first for host information and only if that name service
does not find the host in question are the resolver libraries used.

For example, if the hosts line in the nsswitch.conf file specifies
hosts: nisplus dns , the NIS+ name service will first be searched for host
information. If the information is not found in NIS+, then the DNS resolver is used.
Since name services such as NIS+ and NIS only contain information about hosts in
their own network, the effect of a hosts:nisplus dns line in a switch file is to
specify the use of NIS+ for local host information and DNS for information on
remote hosts out on the Internet.

There are two kinds of DNS clients:

� Client-only. A client-only DNS client does not run in.named ; instead, it consults
the resolver. The resolver knows about a list of name servers for the domain, to
which queries are then directed.

Introduction to DNS 477

� Client-server. A client-server uses the services provided by in.named to resolve
queries forwarded to it by client-machine resolvers.

The Solaris operating environment includes the dynamic library routines that make
up the resolver. Solaris Naming Setup and Configuration Guide, contains instructions
for setting up a host as a DNS client.

Introducing the DNS Namespace
The entire collection of DNS administrative domains throughout the world are
organized in a hierarchy called the DNS namespace. This section shows how the
namespace organization affects both local domains and the Internet.

DNS Namespace Hierarchy
Like the UNIX file system, DNS domains are organized as a set of descending
branches similar to the roots of a tree. Each branch is a domain, each subbranch is a
subdomain. The terms domain and subdomain are relative. A given domain is a
subdomain relative to those domains above it in the hierarchy, and a parent domain
to the subdomains below it.

com

Acme Ajax AAA

Sales Manf QA Corp

Retail Wholesale Actg Finance Mktg

. (root)

Figure 28–3 Domains and Subdomains

For example, in Figure 28–3, com is a parent domain to the Acme, Ajax, and AAA
domains. Or you could just as easily say that those are subdomains relative to the
com domain. In its turn, the Ajax domain is a parent to four subdomains (Sales,
Manf, QA, and Corp).

A domain contains one parent (or top) domain plus the associated subdomains if
any. Domains are named up the tree starting with the lowest (deepest) subdomain

478 Solaris Naming Administration Guide ♦ May 1999

and ending with the root domain. For example, Mktg.Corp.Ajax.Com. from
Figure 28–3.

DNS Hierarchy in a Local Domain
If your company is large enough, it may support a number of domains,organized
into a local namespace. Figure 28–4 shows a domain hierarchy that might be in place
in a single company. The top-level, or “root” domain for the organization is
ajax.com , which has three sub-domains, sales.ajax.com , test.ajax.com , and
manf.ajax.com .

Primary
Server

ajax.com. (the root domain)

sales.ajax.com. manf.ajax.com. test.ajax.com.

Secondary
Servers

Figure 28–4 Hierarchy of DNS Domains in a Single Organization

DNS clients request service only from the servers that support their domain. If the
domain’s server does not have the information the client needs, it forwards the
request to its parent server, which is the server in the next-higher domain in the
hierarchy. If the request reaches the top-level server, the top-level server determines
whether the domain is valid. If it is not valid, the server returns a “not found” type
message to the client. If the domain is valid, the server routes the request down to
the server that supports that domain.

DNS Hierarchy and the Internet
The domain hierarchy shown in Figure 28–4 is, conceptually, a “leaf” of the huge
DNS namespace supported on the global Internet.

The DNS namespace for the Internet is organized hierarchically as shown Figure
28–5. It consists of the root directory, represented as a dot (.) and two top level
domain hierarchies, one organizational and one geographical. Note that the com
domain introduced in Figure 28–3is one of a number of top-level organizational
domains in existence on the Internet.

Introduction to DNS 479

.

com edu milgov net . . . uk fr pe sp jp cd gr . . .

Organizational Hierarchy Geographic Hierarchy

(Root)

Figure 28–5 Hierarchy of Internet Domains

At the present time, the organizational hierarchy divides its namespace into the
top-level domains listed shown in Table 28–1. It is probable that additional top-level
organizational domains will be added in the future.

TABLE 28–1 Internet Organizational Domains

Domain Purpose

com Commercial organizations

edu Educational institutions

gov Government institutions

mil Military groups

net Major network support centers

org Nonprofit organizations and others

int International organizations

The geographic hierarchy assigns each country in the world a two- or three-letter
identifier and provides official names for the geographic regions within each country.
For example, domains in Britain are subdomains of the uk top-level domain,
Japanese domains are subdomains of jp , and so on.

Joining the Internet
The Internet root domain, top-level domains (organizational and geographical) are
maintained by the various Internet governing bodies. People with networks of any
size can “join” the Internet by registering their domain name in either the
organizational or the geographical hierarchy.

480 Solaris Naming Administration Guide ♦ May 1999

Every DNS domain must have a domain name. If your site wants to use DNS for
name service without connecting to the Internet, you can use any name your
organization wants for its your domains and subdomains, if applicable. However, if
your site plans wants to join the Internet, it must register its domain name with the
Internet governing bodies.

To join the Internet, you have to:

� Register your DNS domain name with the an appropriate Internet governing body.

� Obtain a network IP address from that governing body.

There are two ways to accomplish this:

� You can communicate directly with the appropriate Internet governing body or
their agent. In the United States, InterNIC is the company that currently handles
network address and domain registration matters.

� You can contract with an Internet Service Provider (ISP) to assist you. ISPs provide
a wide range of services from consulting to actually hosting your Internet
presence.

Domain Names
Domain names indicate a domain’s position in the overall DNS namespace, much as
path names indicate a file’s position in the UNIX file system. After your local domain
is registered, its name is prepended to the name of the Internet hierarchy to which it
belongs. For example, the ajax domain shown in Figure 28–4has been registered as
part of the Internet com hierarchy. Therefore, its Internet domain name becomes
ajax.com .

Figure 28–6 shows the position of the ajax.com domain in the DNS namespace on
the Internet.

sales manftest

. (root)

ajax

 edu com us ukorg

Figure 28–6 Ajax Domain’s Position in the DNS Namespace

The ajax.com subdomains now have the following names.

Introduction to DNS 481

sales.ajax.com
test.ajax.com
manf.ajax.com

DNS does not require domain names to be capitalized, though they may be. Here are
some examples of machines and domain names:

Boss.manf.ajax.com
quota.Sales.ajax.com

The Internet organization regulates administration of its domains by granting each
domain authority over the names of its hosts and by expecting each domain to
delegate authority to the levels below it. Thus, the com domain has authority over the
names of the hosts in its domain. It also authorizes the formation of the Ajax.com
domain and delegates authority over the names in that domain. The Ajax.com
domain, in turn, assigns names to the hosts in its domain and approves the formation
of the Sales.Ajax.com , Test.Ajax.com , and Manf.Ajax.com domains.

Fully-Qualified Domain Names
A domain name is said to be fully-qualified when it includes the names of every DNS
domain from the local domain on up to “.”, the DNS root domain. Conceptually, the
fully-qualified domain name indicates the path to the root, as does the absolute path
name of a UNIX file. However, fully-qualified domain names are read from lowest,
on the left, to highest, on the right. Therefore, a fully-qualified domain name has the
syntax:

<local_domain_name> .<Internet_Org_name> .

 root domain

The fully qualified domain names for the ajax domain and its subdomains are:

ajax.com.
sales.ajax.com
test.ajax.com.
manf.ajax.com

Note the dot at the furthest right position of the name.

482 Solaris Naming Administration Guide ♦ May 1999

Zones
DNS service for a domain is managed on the set of name servers first introduced
“in.named and DNS Name Servers” on page 477. Name servers can manage a
single domain, or multiple domains, or domains and some or all of their
corresponding subdomains. The part of the namespace that a given name server
controls is called a zone; thus, the name server is said to be authoritative for the zone.
If you are responsible for a particular name server, you may be given the title zone
administrator.

The data in a name server’s database are called zone files. One type of zone file stores
IP addresses and host names. When someone attempts to connect to a remote host
using a host name by a utility like ftp or telnet , DNS performs name-to-address
mapping, by looking up the host name in the zone file and converting it into its IP
address.

Ajax

Sales Manf QA Corp

Retail Wholesale Actg Finance Mktg

Zone

Zone

Figure 28–7 Domains and Zones

For example, the Ajax domain shown in Figure 28–7 contains a top domain (Ajax),
four subdomains, and five sub-subdomains. It is divided into four zones shown by
the thick lines. Thus, the Ajax name server administers a zone composed of the
Ajax , Sales , Retail , and Wholesale domains. The Manf and QAdomains are
zones unto themselves served by their own name servers, and the Corp name server
manages a zone composed of the Corp , Actg , Finance , and Mktg domains.

Reverse Mapping
The DNS database also include zone files that use the IP address as a key to find the
host name of the machine, enabling IP address to host name resolution. This process
is called reverse resolution or more commonly, reverse mapping. Reverse mapping is
used primarily to verify the identity of the machine that sent a message or to
authorize remote operations on a local host.

Introduction to DNS 483

The in-addr.arpa Domain
The in-addr.arpa domain is a conceptual part of the DNS namespace that uses IP
addresses for its leaves, rather than domain names. It is the part of your zone that
enables address to name mapping.

Just as DNS domain names are read with the lowest level subdomain occupying the
furthest left position and the root at the far right, in-addr.arpa domain IP
addresses are read from lowest level to the root. Thus, the IP addresses are read
backward. For example, suppose a host has the IP address 192.200.21.165 . In the
in-addr.arpa zone files, its address is listed as
165.21.200.192.in-addr.arpa. with the dot at the end indicating the root of
the in-addr.arpa domain.

DNS Servers
DNS servers perform one or more functions:

� Zone Master Servers.A master name server maintains all the data corresponding to
the zone, making it the authority for that zone. Master servers are commonly
called authoritative name servers. (See “Master Servers” on page 485.)

There are two types of master server:

� Zone primary master server. Each zone has one server that is designated as the
primary master server for that zone. (See “Primary Master Server” on page 485.)

� Zone secondary master server. A zone may have one or more secondary master
servers. Secondary master servers obtain their DNS data from the zone’s
primary master server. (See “Primary Master Server” on page 485.)

� Cache-only Server. All servers are caching servers in the sense that they maintain a
cache of DNS data. A cache-only server is a server that is not a master server for
any zone other than the in-addr.arpa. domain. (See “Caching and Cache-only
Servers” on page 485.)

� Root Domain servers. A root domain server is the authoritative server for the top of
your DNS domain hierarchy. If your network is connected to the Internet, your
root domain servers are out on the Internet itself. If your network is not connected
to the Internet, you must set up your own root domain server. (See “Root Domain
Name Server” on page 486.)

These different server functions can be performed by the same machine.For example,
a machine can be a primary master server for one zone and a secondary master
server for another zone. When this manual refers to a primary or secondary or
cache-only server, it is not referring to a particular machine, but the role that
machine plays for a given zone.

484 Solaris Naming Administration Guide ♦ May 1999

Master Servers
The master name servers maintain all the data corresponding to the zone, making
them the authority for that zone. These are commonly called authoritative name
servers. The data corresponding to any given zone should be available on at least
two authoritative servers. You should designate one name server as the primary
master server and at least one more as a secondary master server, to act as a backup if
the primary is unavailable or overloaded.

A server may function as a master for multiple zones: as a primary for some zones,
and as a secondary for others.

Primary Master Server
The primary master server is the DNS name server that loads the master copy of its
data from disk when it starts in.named. A zone’s primary master server is where you
make changes for the zone. The primary master is the source for DNS information
regarding its zone. The primary server may also delegate authority to secondary
servers in its zone as well as to servers outside its zone.

Secondary Master Server
A secondary master server maintains a copy of the data for the zone. The primary
server sends its data and delegates authority to the secondary server. Clients can
query a secondary server for DNS information. By using secondary servers, you can
improve response time and reduce network overhead by spreading the load over
multiple machines. Secondary servers also provide redundancy in case the primary
server is not available.

When the secondary server starts in.named, it requests all the data for the given zone
from the primary. The secondary server then periodically checks with the primary to
see if it needs to update its database. The process of sending the most recent zone
database from the primary to the secondary is called a zone transfer. Thus, you do not
modify data files on a secondary server, you modify the data files on the zone’s
primary server and the secondary servers update their files from the primary.

Caching and Cache-only Servers
All name servers are caching servers. This means that the name server caches received
information until the data expires. The expiration process is regulated by the
time-to-live (TTL) field that may be attached to the data.

Additionally, you can set up a cache-only server that is not authoritative for any zone.
A cache-only server is a server that is not a master server for any zone other than the
in-addr.arpa. domain. A cache-only server handles the same kind of queries

Introduction to DNS 485

from clients that authoritative name servers perform. But the cache-only server does
not maintain any authoritative data itself.

A cache-only server requires less memory than an authoritative server, but cannot
function by itself if no primary or secondary servers are available.

Root Domain Name Server
A DNS name space must have one ore more root domain name servers that are
authoritative for the root domain.

� If your network is connected to the Internet, your root domain server exists at the
root domain Internet site and all you have to do is provide that site’s Internet IP
addresses in your cache file as explained in “Internet Root Domain Server” on
page 486.

� If your network is not connected to the Internet, you must set up primary and
secondary name servers in the root-level domain on your local network as
explained in “Non-Internet Root Domain Server” on page 487. This is so that all
domains in your network have a consistent authoritative server to which to refer;
otherwise, machines may not be able to resolve queries.

The information that identifies the root domain name servers is stored in a cache file.
This manual and most Solaris sites call this file named.ca . (Other common names
for this file are: root.cache , named.root , or db.cache .) Each server’s boot file
contains a record identifying the file that holds the root domain name server
information.

Internet Root Domain Server
If your site is connected to the Internet, your DNS name server’s boot files must
point to a common cache file (usually called named.ca) that identifies the root
domain name servers. A template for this file may be obtained from InterNIC
registration services via:

� Anonymous FTP. The FTP site is: ftp.rs.internic.net . The file name is:
/domain/named.root .

� Gopher. The Gopher site is: rs.internic.net . The file is: named.root which
can be found under the InterNIC Registration Services menu, InterNIC
Registration Archives submenu.

If you are naming your DNS files according to the conventions in this manual, you
need to move this file to /var/named/named.ca .

486 Solaris Naming Administration Guide ♦ May 1999

Non-Internet Root Domain Server
If your site is not connected to the Internet, you must set up one or more of your
servers to perform as root domain name servers. The boot files of all DNS name
servers on your network must point to a common cache file (usually called
named.ca) that identifies the root domain name servers. You then create a cache file
that identifies your root name servers.

Since a single machine can be the primary domain name server for more than one
machine, the easiest way to create a root domain name server is to have the server
for your highest level domain also be the server for the logical “.” domain.

For example, suppose you have given your network the domain name solo . The
DNS master name server is dnsmaster.solo. (with a trailing dot). In this case, you
would make dnsmaster the root master server for the “. ” domain.

If your network has more than one top-level domain, the root domain server name
should be the primary name server for all top-level domains. For example, if your
network is divided into two separate, non-hierarchal domains named solo and
private , the same server must be root master server for both of them. Following
the example above that would mean that dnsmaster.solo. is root domain master
for both the solo and the private domains.

How DNS Affects Mail Delivery
DNS provides two principal services, it performs name to address mapping (and also
maps addresses to host names), as discussed in “Name-to-Address Resolution” on
page 474. It also helps mail delivery agents, such as sendmail and POP, deliver
mail along the Internet.

To deliver mail across the Internet, DNS uses mail exchange records (MX records).
Most organizations don’t allow direct delivery of mail that comes across the Internet
for hosts within the organization. Instead, they use a central mail host (or a set of
mail hosts) to intercept incoming mail messages and route them to their recipients.

The mail exchange record identifies the mail host that services each machine in a
domain. Therefore, a mail exchange record lists the DNS domain names of remote
organizations and either the IP address or the host name of its corresponding mail
host.

Introduction to DNS 487

DNS Configuration and Data Files
In addition to the in.named daemon, DNS on a name server consists of a boot file
called named.conf , a resolver file named resolv.conf , and four types of zone
data files.

Names of DNS Data Files
So long as you are internally consistent, you can name the zone data files anything
you want. This flexibility may lead to some confusion when working at different
sites or referring to different DNS manuals and books.

For example, the file names used in Sun manuals and at most many Solaris sites vary
from those used in the book DNS and BIND by Albitz and Liu, O’Reilly &
Associates, 1992, and both of those nomenclatures have some differences from that
used in the public-domain Name Server Operations Guide for BIND, University of
California.

In addition, this manual and other DNS documentation uses generic names that
identify a file’s main purpose, and specific example names for that file in code record
samples. For example, Solaris Naming manuals use the generic name hosts when
describing the function and role of that file, and the example names db.doc and
db.sales.doc in code samples.

For reference purposes, Table 28–2 compares BIND file names from these three
sources:

TABLE 28–2 BIND File Name Examples

Solaris Names
O’Reilly Names or
other names

U.C. Berkeley
Names Content and Purpose of File

/etc/named.conf /etc/named.conf /etc/named.conf The configuration file specifies the type of
server it is running on and the zones that
it serves as a ’Master’ ’Slave’ or "Stub’. It
also defines security, logging, and a finer
granularity of options applied to zones

/etc/
resolv.conf

/etc/
resolv.conf

/etc/
resolv.conf

This file resides on every DNS client
(including DNS servers) and designates
the servers which the client queries for
DNS information.

488 Solaris Naming Administration Guide ♦ May 1999

TABLE 28–2 BIND File Name Examples (continued)

Solaris Names
O’Reilly Names or
other names

U.C. Berkeley
Names Content and Purpose of File

named.ca db.cache

db.root

root.cache This file establishes the names of root
servers and lists their addresses.

Generic: hosts
Examples: db.doc
db.sales

Generic:
db.domain
Examples:
db.movie

db.fx

Generic: hosts

Example: ucbhosts

This file contains all the data about the
machines in the local zone that the server
serves.

Generic:
hosts.rev

Examples:

doc.rev

Generic: db.ADDR
Examples:
db.192.249.249
db.192.249.253

hosts.rev This file specifies a zone in the
in-addr.arpa. domain, a special
domain that allows reverse
(address-to-name) mapping.

named.local Generic: db.cache
Example:
db.127.0.0

named.local This file specifies the address for the local
loopback interface, or localhost

$INCLUDE files $INCLUDE files $INCLUDE files Any file identified by an $INCLUDE()
statement in a data file.

The named.conf File
BIND 8.1 adds a new configuration file, /etc/named.conf , that replaces the
/etc/named.boot file. The /etc/named.conf file establishes the server as a
primary, secondary, or cache-only name server. It also specifies the zones over which
the server has authority and which data files it should read to get its initial data.

The /etc/named.conf file contains statements that implement:

� Security through an Access Control List (ACL) that defines a collection of IP
addresses that a NIS+ host has read/write access.

� Logging specifications

� Selectively applied options for a set of zones, rather than to all zones.

Introduction to DNS 489

The configuration file is read by in.named when the daemon is started by the
server’s start up script, /etc/init.d/inetsvc . The configuration file directs
in.named either to other servers or to local data files for a specified domain.)

named.conf Statements
The named.conf file contains statements and comments. Statements end with a
semicolon. Some statements can contain a contain a block of statements. Again, each
statement in the block is terminated with a semicolon.

The named.conf file supports the following statements:

TABLE 28–3

acl defines a named IP address match list used for access control. The
address match list designates one or more IP addresses (dotted-decimal
notation) or IP prefixes (dotted-decimal notation followed with a slash
and the number of bits in the netmask). The named IP address match list
must be defined by an acl statement before it can be used elsewhere; no
forward references allowed.

include inserts an include file at the point where the include statement is
encountered. Use include to break up the configuration into more easily
managed chunks.

key specifies a key ID used for authentication and authorization on a
particular name server. See the server statement.

logging specifies the information the server logs and the destination of log
messages.

options controls global server configuration options and sets default values for
other statements.

server sets designated configuration options associated with a remote name
server. Selectively applies options on a per-server basis, rather than to all
servers

zone defines a zone. Selectively applies options on a per-zone basis, rather than
to all zones.

CODE EXAMPLE 28–1 Example Master Configuration File for a Primary Server

options {
directory "/var/named";

(continued)

490 Solaris Naming Administration Guide ♦ May 1999

(Continuation)

datasize 2098;
forward only;
forwarders {

99.11.33.44;
};
recursion no;
transfers-in 10;
transfers-per-ns 2;
allow-transfer {

127.0.1.1/24;
};

};

logging {
category queries { default_syslog; };

};

include "/var/named/abcZones.conf"

// here are the names of the primary files
zone "cities.zn" {

type master;
file "db.cities.zn";

};

zone "0.0.127.in-addr.arpa." {
type master;
file "db.127.cities.zn";

};

zone "168.192.in-addr.arpa" {
type master;
file "db.cities.zn.rev";

};

zone "sales.doc.com" {
type slave;
file "slave/db.sales.doc";
masters {

192.168.1.151;
};

};

zone "168.192.in-addr.arpa" {
type slave;
file "slave/db.sales.doc.rev";
masters {

192.168.1.151;
};

};

Introduction to DNS 491

Migration from BIND 4.9.x to BIND 8.1.x
Become super user and run the Korn shell script, /usr/bin/named-bootconf , to
convert a BIND 4.9.x named.boot file to a BIND 8.1.x named.conf file. See
named-bootconf (1M).

Note - In Solaris 7, the named.boot is ignored.

The named.ca File
The named.ca file establishes the names of root servers and lists their addresses. If
your network is connected to the Internet, named.ca lists the Internet name servers;
otherwise, it lists the root domain name servers for your local network. The
in.named daemon cycles through the list of servers until it contacts one of them. It
then obtains from that server the current list of root servers, which it uses to update
named.ca .

The hosts File
The hosts file contains all the data about the machines in the local zone. The name
of this file is specified in the boot file. To avoid confusion with /etc/hosts , name
the file something other than hosts , for example, you could name these files using
the pattern db. domain. Using that nomenclature, the host files for the doc.com and
sales.doc.com domains might be db.doc and db.sales .

The hosts.rev File
The hosts.rev file specifies a zone in the in-addr.arpa . domain, the special
domain that allows reverse (address-to-name) mapping. The name of this file is
specified in the boot file.

The named.local File
The named.local file specifies the address for the local loopback interface, or
localhost, with the network address 127.0.0.1. The name of this file is specified in the
boot file. Like other files, you can give it a name other than the name used in this
manual.

492 Solaris Naming Administration Guide ♦ May 1999

$INCLUDE Files
An include file is any file named in an $INCLUDE() statement in a DNS data file.
$INCLUDE files can be used to separate different types of data into multiple files for
your convenience.

For example, suppose a data file contained following line:

$INCLUDE /etc/named/data/mailboxes

This line causes the /etc/named/data/mailboxes file to be loaded at that point.
In this instance, /etc/named/data/mailboxes is an $INCLUDE file. Use of
$INCLUDE files is optional. You can use as many as you wish, or none at all.

Data File Resource Record Format
All the data files used by the DNS daemon in.named are written in standard
resource record format. Each DNS data file must contain certain resource records. This
section describes the DNS data files and the resource records each file should contain.

Standard Resource Record Format
In the standard resource record format, each line of a data file is called a resource
record (RR), which contains the following fields separated by white space:

namettl class record-type record-specific-data

The order of the fields is always the same; however, the first two are optional (as
indicated by the brackets), and the contents of the last vary according to the
record-type field.

The name Field
The first field is the name of the domain that applies to the record. If this field is left
blank in a given RR, it defaults to the name of the previous RR.

A domain name in a zone file can be either a fully qualified name, terminated with a
dot, or a relative name, in which case the current domain is appended to it.

Introduction to DNS 493

The ttl Field
The second field is an optional time-to-live field. This specifies how long (in seconds)
this data will be cached in the database before it is disregarded and new information
is requested from a server. By leaving this field blank, the ttl defaults to the
minimum time specified in the Start-Of-Authority (SOA) resource record.

If the ttl value is set too low, the server will incur a lot of repeat requests for data
refreshment; if, on the other hand, the ttl value is set too high, changes in the
information will not be timely distributed.

Most ttl values should be initially set to between a day (86400) and a week (604800).
Then, depending on the frequency of actual change of the information, you can
change the appropriate ttl values to reflect that frequency. Also, if you have some ttl
values that have very high numbers because you know they relate to data that rarely
changes. When you know that the data is now about to change, reset the ttl to a low
value (3600 to 86400) until the change takes place. Then change it back to the original
high value.

All RR’s with the same name, class, and type should have the same ttl value.

The class Field
The third field is the record class. Only one class is currently in use: IN for the TCP/
IP protocol family.

The record-type Field
The fourth field states the resource record type. There are many types of RR’s; the
most commonly used types are discussed in “Resource Record Types” on page 496.

The record-specific-data Field
The contents of the record-specific-data field depend on the type of the particular
resource record.

Although case is preserved in names and data fields when loaded into the name
server, all comparisons and lookups in the name server database are case insensitive.
However, this situation may change in the future; thus, you should be consistent in
your use of lower and uppercase.

Special Resource Record Characters
The following characters have special meanings:

494 Solaris Naming Administration Guide ♦ May 1999

TABLE 28–4 Special Resource Record Characters

Character Definition

. A free-standing dot in the name field refers to the current domain.

@ A free-standing @in the name field denotes the current origin.

.. Two free-standing dots represent the null domain name of the root
when used in the name field.

\ X Where X is any character other than a digit (0-9), quotes that character
so that its special meaning does not apply. For example, you can use
\. to place a dot character in a label.

\ DDD Where each D is a digit, this is the octet corresponding to the decimal
number described by DDD. The resulting octet is assumed to be text
and is not checked for special meaning.

() Use parentheses to group data that crosses a line. In effect, line
terminations are not recognized within parentheses.

; A semicolon starts a comment; the remainder of the line is ignored.

* An asterisk signifies a wildcard.

Most resource records have the current origin appended to names if they are not
terminated by a dot (.) This is useful for appending the current domain name to the
data, such as machine names, but may cause problems when you do not want this to
happen. You should use a fully qualified name ending in a period if the name is not
in the domain for which you are creating the data file.

Control Entries
The only lines that do not conform to the standard RR format in a data file are
control-entry lines. There are two kinds of control entries: $INCLUDE() and
$ORIGIN() .

$INCLUDE
An include line begins with $INCLUDE in column 1, and is followed by a file name
(known as the $INCLUDE file). This feature is particularly useful for separating
different types of data into multiple files as in this example:

Introduction to DNS 495

$INCLUDE /etc/named/data/mailboxes

The line is interpreted as a request to load the /etc/named/data/mailboxes file
at that point. The $INCLUDE command does not cause data to be loaded into a
different zone or tree. This is simply a way to allow data for a given zone to be
organized in separate files. For example, mailbox data might be kept separately from
host data using this mechanism.

Use of $INCLUDE statements and files is optional. You can use as many as you wish,
or none at all.

$ORIGIN()

The $ORIGIN command is a way of changing the origin in a data file. The line starts
in column 1, and is followed by a domain name. It resets the current origin for
relative domain names (for example, not fully qualified names) to the stated name.
This is useful for putting more than one domain in a data file.

Note - You cannot use $ORIGIN() for putting more than one zone in a data file.

Use of $ORIGIN commands in a data file is optional. If there is no $ORIGIN()
statement the default origin for DNS data files is the domain named in the second
field of the primary or secondary line of the named.conf file.

Resource Record Types
The most commonly used types of resource records are listed in Table 28–5. They are
usually entered in the order shown in Table 28–5, but that is not a requirement.

TABLE 28–5 Commonly Used Resource Record Types

Type Description

SOA Start of authority

NS Name server

A Internet address (name to address)

PTR Pointer (address to name)

CNAME Canonical name (nickname)

TXT Text information

496 Solaris Naming Administration Guide ♦ May 1999

TABLE 28–5 Commonly Used Resource Record Types (continued)

Type Description

WKS Well-known services

HINFO Host information

MX Mail exchanger

SOA— Start of Authority
Code Example 28–2 shows the syntax of a start-of-authority (SOA) resource record.

CODE EXAMPLE 28–2 SOA Record Format

name class SOA origin person-in-charge (serial number
refresh

retry
expire
ttl)

The Start-Of-Authority record designates the start of a zone. The zone ends at the
next SOA record. The SOA record fields are described below.

name
This field indicates the name of the zone. Note that the zone name must end with a
trailing dot. For example: doc.com. is correct, while doc.com is wrong.

class
This field is the address class. For example, IN for Internet (the most commonly used
class).

SOA
This field is the type of this resource record.

Introduction to DNS 497

origin

This field is the name of the host where this data file resides. Note that this host
name must end in a trailing dot. For example, dnsmaster.doc.com. is correct, but
dnsmaster.doc.com is wrong.

person-in-charge

This field is the email address of the person responsible for the name server. For
example, kjd.nismaster.doc.com . Again, this name must end with a trailing dot.

serial

This field is the version number of this data file. You must increment this number
whenever you make a change to the data: secondary servers use the serial field to
detect whether the data file has been changed since the last time they copied the file
from the master server.

refresh

This field indicates how often, in seconds, a secondary name server should check
with the primary name server to see if an update is needed. For example, 7200
indicates a period of two hours.

retry

This field indicates how long, in seconds, a secondary server is to retry after a failure
to check for a refresh.

expire

This field is the upper limit, in seconds, that a secondary name server is to use the
data before it expires for lack of getting a refresh.

ttl

This field is the default number of seconds to be used for the time-to-live field on
resource records that don’t have a ttl specified elsewhere.

There should only be one SOA record per zone. Code Example 28–3 is a sample SOA
resource record.

498 Solaris Naming Administration Guide ♦ May 1999

CODE EXAMPLE 28–3 Sample SOA Resource Record

;name class SOA origin person-in-charge
doc.com. IN SOA dnsmaster.doc.com. root.nismaster.doc.com. (

101 ;Serial
7200 ;Refresh
3600 ;Retry
432000 ;Expire
86400) ;Minimum)

NS—Name Server
Code Example 28–4 shows the syntax of a name-server (NS) resource record:

CODE EXAMPLE 28–4 NS Record Format

domainname [optional TTL] class NS name-server-name

The name-server record lists by name a server responsible for a given domain. The
name field lists the domain that is serviced by the listed name server. If no name field
is listed, then it defaults to the last name listed. One NS record should exist for each
primary and secondary master server for the domain. Code Example 28–5 is a
sample NS resource record.

CODE EXAMPLE 28–5 Sample NS Resource Record

;domainname [TTL] class NS nameserver
doc.com 90000 IN NS sirius.doc.com.

A—Address
Code Example 28–6 shows the syntax of an address (A) resource record:

CODE EXAMPLE 28–6 Address Record Format

machinename [optional TTL] class A address

The address (A) record lists the address for a given machine. The name field is the
host name, and the address is the IP address. One A record should exist for each
address of the machine (in other words, routers, or gateways require at least two
entries, a separate entry including the IP address assigned to each network interface).

Introduction to DNS 499

CODE EXAMPLE 28–7 Sample Address Record

;machinename [TTL] class A address
sirius IN A 123.45.6.1

HINFO—Host Information
Code Example 28–8 shows the syntax of a host-information (HINFO) resource record:

CODE EXAMPLE 28–8 HINFO Record Format

[optional name] [optional TTL] class HINFO hardware OS

The host-information resource record (HINFO) contains host-specific data. It lists the
hardware and operating environment that are running at the listed host. If you want
to include a space in the machine name or in the entry in the hardware field, you
must surround the entry with quotes. The name field specifies the name of the host.
If no name is specified, it defaults to the last in.named host. One HINFO record
should exist for each host. Code Example 28–9 is a sample HINFO resource record.

CODE EXAMPLE 28–9 Sample HINFO Resource Record

;[name] [TTL] class HINFO hardware OS
IN HINFO Sparc-10 UNIX

Caution - Because the HINFO field provides information about the machines on
your network, many sites consider it a security risk and no longer use it.

WKS—Well-Known Services
Code Example 28–10 shows the syntax of a well-known services (WKS) resource
record:

CODE EXAMPLE 28–10 WKS Record Format

[Optional name] [TTL] class WKSaddress protocol-list-of-services

The Well-Known Services (WKS) record describes the well-known services supported
by a particular protocol at a specified address. The list of services and port numbers
come from the list of services specified in the services database. Only one WKS

500 Solaris Naming Administration Guide ♦ May 1999

record should exist per protocol per address. Code Example 28–11is an example of a
WKS resource record.

CODE EXAMPLE 28–11 Sample WKS Resource Record

;[name] [TTL] class WKS address protocol-list-of-services
altair IN WKS 123.45.6.1 TCP (smtp discard rpc

sftp uucp-
path systat daytime

netstat qotd nntp doc.com)

Caution - The WKS record is optional. For security reasons, most sites no longer
provide this information.

CNAME—Canonical Name

Code Example 28–12 shows the syntax of a canonical-name (CNAME) resource
record.

CODE EXAMPLE 28–12 CNAME Record Format

nickname [optional TTL] class CNAME canonical-name

The Canonical-Name Resource record (CNAME) specifies a nickname or alias for a
canonical name. A nickname should be unique. All other resource records should be
associated with the canonical name and not with the nickname. Do not create a
nickname and then use it in other resource records. Nicknames are particularly
useful during a transition period, when a machine’s name has changed but you want
to permit people using the old name to reach the machine. Nicknames can also be
used to identify machines that serve some specific purpose such as a mail server.
Code Example 28–13is a sample CNAME resource record.

CODE EXAMPLE 28–13 Sample CNAME Resource Record

;nickname [TTL] class CNAME canonical-name
mailhost IN CNAME antares.doc.com

PTR—Pointer Record

Code Example 28–14 shows the syntax for a pointer (PTR) resource record.

Introduction to DNS 501

CODE EXAMPLE 28–14 PTR Record Format

special-name [optional TTL] class PTR-real-name

A pointer record allows special names to point to some other location in the domain.
In the example, PTR’s are used mainly in the in-addr.arpa. records for the
translation of an address (the special name) to a real name. When translating an
address, if the domain is fully qualified only the machine identification number need
be specified. PTR names should be unique to the zone. The PTR records Code
Example 28–15sets up reverse pointers for the special in-addr.arpa domain.

CODE EXAMPLE 28–15 Sample PTR Resource Record

;special name [TTL] class PTR-real-name
1 IN PTR sirius.doc.com.

MX—Mail Exchanger

Code Example 28–16 shows the syntax for a mail-exchanger (MX) resource record.

CODE EXAMPLE 28–16 MX Record Format

name [optional TTL] class MX preference-value mailer-exchanger

The mail-exchanger resource records are used to specify a machine that knows how
to deliver mail to a domain or specific machines in a domain. There may be more
than one MX resource record for a given name. In Code Example 28–17,
Seismo.CSS.GOV . (note the fully qualified domain name) is a mail gateway that
knows how to deliver mail to Munnari.OZ.AU . Other machines on the network
cannot deliver mail directly to Munnari . Seismo and Munnari may have a private
connection or use a different transport medium. The preference-value field indicates
the order a mailer should follow when there is more than one way to deliver mail to
a single machine. The value 0 (zero) indicates the highest preference. If there is more
than one MX resource record for the same name, records may or may not have the
same preference value.

You can use names with the wildcard asterisk (*) for mail routing with MX records.
There are likely to be servers on the network that simply state that any mail to a
domain is to be routed through a relay. In Code Example 28–17, all mail to hosts in
domain foo.com is routed through RELAY.CS.NET. You do this by creating a
wildcard resource record, which states that the mail exchanger for *.foo.com is
RELAY.CS.NET. The asterisk will match any host or subdomain of foo.com , but it
will not match foo.com itself.

502 Solaris Naming Administration Guide ♦ May 1999

CODE EXAMPLE 28–17 Sample MX Resource Record

;name [TTL] class MX preference mailer-exchanger
Munnari.OZ.AU. IN MX 0 Seismo.CSS.GOV.
foo.com. IN MX 10 RELAY.CS.NET.
*.foo.com. IN MX 20 RELAY.CS.NET.

Solaris DNS BIND Implementation
For your convenience, the Solaris operating environment supplies a compiled version
of Berkeley Internet Name Domain (BIND) version 8.1.2. In compiling this software,
options and choices were made to meet the needs of the greatest number of sites. If
this pre-compiled version of BIND does not meet your requirements, you can
recompile your own version of BIND from the publicly available source code.

In compiling the BIND version supplied with the Solaris operating environment the
following choices were made:

� RFC1535. Not implemented since because doing so would remove implicit search
lists.

� Inverse Queries. Enabled because SunOS 4.x nslookup will not work without
them.

� Bogus Name Logging. Logging of bogus name servers is not implemented because it
produces too many unimportant messages.

� Default Domain Name. If the DNS domain name is not set in /etc/resolv.conf ,
or via the LOCALDOMAINenvironment variable, libresolv derives it from the
NIS or NIS+ domain name provided that the /etc/nsswitch.conf file contains
nisplus or nis as the first element in the hosts line.

� Utility Scripts. The BIND utility scripts are not included in this Solaris release.

� Test Programs. The BIND test programs dig , dnsquery , and host are not
included in this Solaris release because their purpose is similar to that of
nslookup and nstest .

Introduction to DNS 503

504 Solaris Naming Administration Guide ♦ May 1999

CHAPTER 29

Administering DNS

This chapter describes how to administer the Domain Name System (DNS). For more
detailed information, see DNS and Bind by Cricket Liu and Paul Albitz, (O’Reilly,
1992) and “Name Server Operations Guide for BIND”, University of California,
Berkeley.

� “Trailing Dots in Domain Names ” on page 505

� “Modifying DNS Data Files” on page 506

� “Adding and Deleting Machines” on page 507

� “Adding Additional DNS Servers” on page 509

� “Creating DNS Subdomains” on page 509

� “DNS Error Messages and Problem Solving” on page 513

Trailing Dots in Domain Names
When working with DNS-related files, follow these rules regarding the trailing dot in
domain names:

� Use a trailing dot in domain names in hosts , hosts.rev , named.ca , and
named.local data files. For example, sales.doc.com. is correct.

� Do not use a trailing dot in domain names in named.boot or resolv.conf files.
For example, sales.doc.com is correct.

505

Modifying DNS Data Files
Whenever you add or delete a host or make some other change in one of the DNS
data files in the master DNS server or otherwise modify DNS data files, you must
also:

� Change the serial number in the SOA resource record so the secondary servers
modify their data accordingly (see “Changing the SOA Serial Number” on page
506).

� Inform in.named on the master server that it should reread the data files and
update its internal database (see “Forcing in.named to Reload DNS Data” on
page 507).

Changing the SOA Serial Number
Every DNS database file begins with a Start of Authority (SOA) resource record.
Whenever you alter any data in a DNS database file, you must increment the SOA
serial number by one integer.

For example, if the current SOA Serial Number in a data file is 101 , and you make a
change to the file’s data, you must change 101 to 102 . If you fail to change the SOA
serial number, the domain’s secondary servers will not update their copy of the
database files with the new information and the primary and secondary servers will
become out of synch.

A typical SOA record of a sample hosts file looks like this:

; sample hosts file
@ IN SOA nismaster.doc.com. root.nismaster.doc.com. (

109 ; Serial
10800 ; Refresh

1800 ; Retry
3600000 ; Expire
86400) ; Minimum

Thus, if you made a change to this hosts file, you would change 109 to 110 . The
next time you change the file, you would change 110 to 111 .

506 Solaris Naming Administration Guide ♦ May 1999

Forcing in.named to Reload DNS Data
When in.named successfully starts, the daemon writes its process ID to the file
/etc/named.pid . To have in.named reread named.boot and reload the database,
enter:

kill -HUP ‘cat /etc/named.pid‘

This will eliminate all previously cache, and the caching process will start over again.

Caution - Do not attempt to run in.named from inetd. This will continuously restart
the name server and defeat the purpose of having a cache.

Adding and Deleting Machines
When you add or delete a machine, always make your changes in the data files
stored on your primary DNS server. Do not make changes or edit the files on your
secondary servers because those will be automatically updated from the primary
server based on your changing the SOA serial number.

Adding a Machine
To add a machine to a DNS domain, you set the new machine up as a DNS client
and then add records for the new machine to the appropriate hosts and
hosts.rev files.

For example, to add the host rigel to the doc.com domain:

1. Create a /etc/resolv.conf file on rigel .

2. Add dns to the hosts line of rigel ’s /etc/nsswitch.conf file

(See “DNS and Internet Access” on page 20.)

3. Add an address (A) record for rigel to the primary server’s hosts file.

For example:

rigel IN A 123.45.6.112

4. Add any additional optional records for rigel to the primary server’s hosts
file.

Optional records could include:

Administering DNS 507

� Alias (CNAME)

� Mail exchange (MX)

� Well known services (WKS)

� Host information (HINFO)

5. Add a PTR record for rigel to the hosts.rev file.

6. Increment the SOA serial number in the primary server’s hosts and
hosts.rev files.

7. Reload the server’s data.

Either reboot the server or enter:

kill -HUP ‘cat /etc/named.pid‘

These steps are explained in more detail in Solaris Naming Setup and
Configuration Guide.

Removing a Machine
To remove a machine from a DNS domain:

1. Remove dns from the hosts line of the machine’s nsswitch.conf file.

2. Remove the machine’s /etc/resolv.conf file.

3. Delete the records for that machine from the primary server’s hosts and
hosts.rev files.

4. If the machine has CNAME records pointing to it, those CNAME records must
also be deleted from the hosts file.

5. Set up replacements for services supported by the removed machine.

If the machine is a primary server, mail host, or host for any other necessary
process or service, you must take whatever steps are necessary to set up some
other machine to perform those services.

508 Solaris Naming Administration Guide ♦ May 1999

Adding Additional DNS Servers
You can add primary and secondary servers to your network. To add a DNS server:

1. Set the server up as a DNS client.

See “Adding a Machine” on page 507.

2. Set up the server’s boot file.

3. Set up the server’s named.ca file.

4. Set up the server’s hosts file.

5. Set up the server’s hosts.rev file.

6. Set up the server’s named.local file.

7. Initialize the server.

8. Test the server.

These steps are explained in more detail in Solaris Naming Setup and
Configuration Guide.

Creating DNS Subdomains
As your network grows you may find it convenient to divide it into one or more
DNS subdomains. (See “Introducing the DNS Namespace” on page 478 for a
discussion of DNS domain hierarchy and structure.)

When you divide your network into a parent domain and one or more subdomains,
you reduce the load on individual DNS servers by distributing responsibility across
multiple domains. In this way you can improve network performance. For example,
suppose there are 900 machines on your network and all of them are in one domain.
In this case, one set of DNS servers composed of a primary and additional secondary
and caching-only servers have to support 900 machines. If you divide this network
into a parent domain and two subdomain, each with 300 machines, then you have
three sets of primary and secondary servers each responsible for only 300 machines.

Administering DNS 509

By dividing your network into domains that match either your geographic or
organizational structure (or both), the DNS domain names indicate where a given
machine or email address fits into your structure. For example,
rigel@alameda.doc.com implies that the machine rigel is located at your
Alameda site, and the email address barnum@sales.doc.com implies that the user
barnum is part of your Sales organization.

Dividing your network into multiple domains requires more set up work than
keeping everything in one domain, and you have to maintain the delegation data
that ties your domains together. On the other hand, when you have multiple
domains, you can distribute domain maintenance tasks among different
administrators or teams, one for each domain.

Planning Your Subdomains
Here are some points to consider before dividing your network into a parent and one
or more subdomains:

� How many subdomains? The more subdomains your create, the more initial set up
work you have to do and the more ongoing coordination work for the
administrators in the parent domain. The more subdomains, the more delegation
work for the servers in the parent domain. On the other hand, fewer domains
mean larger domains, and the larger a domain is the more server speed and
memory is required to support it.

� How to divide your network? You can divide your network into multiple domains
any way you want. The three most common methods are by organizational
structure where you have separate subdomains for each department or division
(sales, research, manufacturing, etc.); by geography where you have separate
subdomains for each site; or by network structure where you have separate
subdomains for each major network component. The most important rule to
remember is that administration and use will be easier if your domain structure
follows a consistent, logical, and self-evident pattern.

� Consider the future. The most confusing domain structures are those that grow over
time with subdomains added haphazardly as new sites and departments are
created. To the degree possible, try to take future growth into account when
designing your domain hierarchy. Also take into account stability. It is best to base
your subdomains on what is most stable. For example, if your geographic sites are
relatively stable but your departments and divisions are frequently reorganized, it
is probably better to base your subdomains on geography rather than
organizational function. On the other hand, if your structure is relatively stable but
you frequently add or change sites, it is probably better to base your subdomains
on your organizational hierarchy.

� Wide area network links. When a network spans multiple sites connected via
modems or leased lines, performance will be better and reliability greater if your
domains do not span such Wide Area Network (WAN) links. In most cases, WAN

510 Solaris Naming Administration Guide ♦ May 1999

links are slower than contiguous network connections and more prone to failure.
When servers have to support machines that can only be reached over a WAN
link, you increase the network traffic funneling through the slower link, and if
there is a power failure or other problem at one site, it could affect the machines at
the other sites. (The same performance and reliability considerations apply to DNS
zones. As a general rule of thumb, it is best if zones do not span WAN links.)

� NIS+ name service. If your enterprise-level name service is NIS+, administration
will be easier if your DNS and NIS+ domain and subdomain structures match.

� Subdomain names. To the degree possible, it is best to establish and follow a
consistent policy for naming your subdomains. When domain names are
consistent, it is much easier for users to remember and correctly specify them.
Keep in mind that domain names are an important element in all of your DNS
data files and that changing a subdomain name requires editing every file in
which the old name appears. Thus, it is best to choose subdomain names that are
stable and unlikely to need changing. You can use either full words, such as
manufacturing , or abbreviations, such as manf , as subdomain names, but it will
confuse users if some subdomains are named with abbreviations and others with
full names. If you decide to use abbreviations, use enough letters to clearly
identify the name because short cryptic names are hard to use and remember. Do
not use reserved top-level Internet domain names as subdomain names. This
means that names like org , net , com, gov , edu , and any of the two-letter country
codes such as jp , uk , ca , and it should never be used as a subdomain name.

Setting Up a Subdomain
In most cases, new subdomains are usually created from the start with a new
network and machines, or split off from an existing domain. The process is
essentially similar in both cases.

Once you have planned your new subdomain, follow these steps to set it up:

1. Make sure all of the machines in the new subdomain are properly set up as
DNS clients.

If you are carving a new subdomain out of an existing domain, most of the
machines are probably already set up of DNS clients. If you are building a new
subdomain from scratch (or adding new machines to an existing network) you
must install properly configured resolv.conf and nsswitch.conf files on
each machine as described in Solaris Naming Setup and Configuration Guide.

2. Install properly configured boot and DNS data files on the subdomain’s
primary master server.

Install the following files on each server (see Solaris Naming Setup and
Configuration Guide for details):

� /etc/named.boot .

Administering DNS 511

� /var/named/named.ca .

� /var/named/hosts .

� /var/named/hosts.rev .

� /var/named/named.local .

Note that the server host files must have an Address (A) record, any necessary
CNAMErecords for each machine in the subdomain and the server hosts.rev files
must have a pointer (PTR) record for each machine in the subdomain. Optional
HINFO and WKSrecords can also be added.

3. If you are splitting an existing domain, remove the records for the machines in
the new subdomain from the parent domain’s master server hosts and
hosts.rev files.

This requires deleting the A records for the machines that are now in the new
subdomain from the hosts files of the old domain’s servers, and also deleting the
PTR records for those machines from the old domain’s hosts.rev files. Any
optional HINFO and WKSrecords for the moved machines should also be deleted.

4. If you are splitting an existing domain, add the new subdomain name to
CNAME records in the parent domain’s master server hosts and file.

For example, suppose you are using the machine aldebaran as a fax server and
it had the following CNAME record in the hosts file of the parent domain’s
servers:

faxserver IN CNAME aldebaran

In addition to creating a new faxserver CNAME record for aldebaran in the
hosts file of the new subdomain’s master server, you would also have to change
this CNAME record in the parent domain’s hosts file to include aldebaran ’s
subdomain as shown below:

faxserver IN CNAME aldebaran.manf.doc.com

5. Add NS records for the new subdomain’s servers to the parent domain’s hosts
file.

For example, suppose that your parent domain is doc.com and you are creating
a new manf.doc.com subdomain with the machine rigel as manf ’s primary
master server and aldebaran as the secondary master server. You would add
the following records to the hosts file of doc.com ’s primary master server:

manf.doc.com 99999 IN NS rigel.manf.doc.com
99999 IN NS aldebaran.manf.doc.com

512 Solaris Naming Administration Guide ♦ May 1999

6. Add A records for the new subdomain’s servers to the parent domain’s hosts
file.

Continuing with the above example, you would add the following records to the
hosts file of doc.com ’s primary master server:

rigel.manf.doc.com 99999 IN A 1.22.333.121
aldebaran.manf.doc.com 99999 IN A 1.22.333.136

7. Start up named on the subdomain’s servers.

/usr/sbin/in.named

Instead of running in.named from the command line, you can reboot. See Solaris
Naming Setup and Configuration Guide for details.

DNS Error Messages and Problem
Solving
SeeAppendix A , and Appendix B for DNS problem solving and error message
information.

Administering DNS 513

514 Solaris Naming Administration Guide ♦ May 1999

PART VII Appendices

This part of the manual provides reference material.

� Appendix A

� Appendix B

� Appendix C

� Appendix D

APPENDIX A

Problems and Solutions

This appendix describes some of the problems you may encounter while
administering Solaris operating environment namespaces and how to correct them.

� “Troubleshooting NIS+” on page 518

� “NIS+ De-Bugging Options” on page 518

� “NIS+ Administration Problems” on page 519

� “NIS+ Database Problems” on page 523

� “NIS+ and NIS Compatibility Problems” on page 524

� “NIS+ Object Not Found Problems” on page 526

� “NIS+ Ownership and Permission Problems” on page 529

� “NIS+ Security Problems” on page 531

� “NIS+ Performance and System Hang Problems” on page 540

� “NIS+ System Resource Problems” on page 544

� “NIS+ User Problems” on page 545

� “Other NIS+ Problems” on page 547

� “NIS Problems and Solutions” on page 549

� “DNS Problems and Solutions” on page 556

� “FNS Problems and Solutions” on page 561

517

Troubleshooting NIS+
In this appendix, problems are grouped according to type. For each problem there is
a list of common symptoms, a description of the problem, and one or more
suggested solutions.

In addition to this appendix, there is an appendix containing an alphabetic listing of
the more common NIS+ error messages. If you are responding to a specific error
message, check Appendix B first. If the problem is simple, or specific to a single error
message, its solution is usually described in Appendix B.

NIS+ De-Bugging Options
The NIS_OPTIONS environment variable can be set to control various NIS+
debugging options.

Options are specified after the NIS_OPTIONS command separated by spaces with the
option set enclosed in double quotes. Each option has the format name=value. Values
can be integers, character strings, or filenames depending on the particular option. If
a value is not specified for an integer value option, the value defaults to 1.

NIS_OPTIONS recognizes the following options:

TABLE A–1 NIS_OPTIONS Options and Values

Option Values Actions

debug_file filename Directs debug output to specified file. If this option is not
specified, debug output goes to stdout .

debug_bind Number Displays information about the server selection process.

debug_rpc 1 or 2 If the value is 1, displays RPC calls made to the NIS+ server and
the RPC result code. If the value is 2, displays both the RPC calls
and the contents of the RPC and arguments and results.

debug_calls Number Displays calls to the NIS+ API and the results that are returned
to the application.

pref_srvr String Specifies preferred servers in the same format as that generated
by the nisprefadm command (see Table 15–1). This will
over-ride the preferred server list specified in nis_cachemgr .

518 Solaris Naming Administration Guide ♦ May 1999

TABLE A–1 NIS_OPTIONS Options and Values (continued)

Option Values Actions

server String Bind to a particular server.

pref_type String Not currently implemented.

For example, (assuming that you are using a C-Shell):

� To display many debugging messages you would enter:

setenv NIS_OPTIONS ‘‘debug_calls=2 debug_bind debug_rpc’’

� To obtain a simple list of API calls and store them in the file /tmp/CALLS you
would enter:

setenv NIS_OPTIONS ‘‘debug_calls debug_file=/tmp/CALLS’’

� To obtain a simple list of API calls sent to a particular server you would enter:

setenv NIS_OPTIONS ‘‘debug_calls server=sirius’’

NIS+ Administration Problems
This section describes problems that may be encountered in the course of routine
NIS+ namespace administration work. Common symptoms include:

� ‘‘Illegal object type’’ for operation message.

� Other “object problem” error messages

� Initialization failure

� Checkpoint failures

� Difficulty adding a user to a group

� Logs too large/lack of disk space/difficulty truncating logs

� Cannot delete groups_dir or org_dir

Illegal Object Problems
Symptoms

� "Illegal object type" for operation message

� Other ‘‘object problem’’ error messages

There are a number of possible causes for this error message:

Problems and Solutions 519

� You have attempted to create a table without any searchable columns.

� A database operation has returned the status of DB_BADOBJECT(see the nis_db
man page for information on the db error codes).

� You are trying to add or modify a database object with a length of zero.

� You attempted to add an object without an owner.

� The operation expected a directory object, and the object you named was not a
directory object.

� You attempted to link a directory to a LINK object.

� You attempted to link a table entry.

� An object that was not a group object was passed to the nisgrpadm command.

� An operation on a group object was expected, but the type of object specified was
not a group object.

� An operation on a table object was expected, but the object specified was not a
table object.

nisinit Fails
Make sure that:

� You can ping the NIS+ server to check that it is up and running as a machine.

� The NIS+ server that you specified with the −H option is a valid server and that it
is running the NIS+ software.

� rpc.nisd is running on the server.

� The nobody class has read permission for this domain.

� The netmask is properly set up on this machine.

Checkpoint Keeps Failing
If checkpoint operations with a nisping −C command consistently fail, make sure
you have sufficient swap and disk space. Check for error messages in syslog .
Check for core files filling up space.

Cannot Add User to a Group
A user must first be an NIS+ principal client with a LOCAL credential in the
domain’s cred table before the user can be added as a member of a group in that
domain. A DES credential alone is not sufficient.

520 Solaris Naming Administration Guide ♦ May 1999

Logs Grow too Large
Failure to regularly checkpoint your system with nisping −Ccauses your log files to
grow too large. Logs are not cleared on a master until all replicas for that master are
updated. If a replica is down or otherwise out of service or unreachable, the master’s
logs for that replica cannot be cleared. Thus, if a replica is going to be down or out
of service for a period of time, you should remove it as a replica from the master as
described in “Removing a Directory ” on page 203. Keep in mind that you must first
remove the directory’s org_dir and groups_dir subdirectories before you remove
the directory itself.

Lack of Disk Space
Lack of sufficient disk space will cause a variety of different error messages. (See
“Insufficient Disk Space” on page 544 for additional information.

Cannot Truncate Transaction Log File
First, check to make sure that the file in question exists and is readable and that you
have permission to write to it.

� You can use ls /var/nis/trans.log to display the transaction log.

� You can use nisls −l and niscat to check for existence, permissions, and
readability.

� You can use syslog to check for relevant messages.

The most likely cause of inability to truncate an existing log file for which you have
the proper permissions is lack of disk space. (The checkpoint process first creates a
duplicate temporary file of the log before truncating the log and then removing the
temporary file. If there is not enough disk space for the temporary file, the
checkpoint process cannot proceed.) Check your available disk space and free up
additional space if necessary.

Domain Name Confusion
Domain names play a key role in many NIS+ commands and operations. To avoid
confusion, you must remember that except for root servers, all NIS+ masters and
replicas are clients of the domain above the domain that they serve. If you make the
mistake of treating a server or replica as if it were a client of the domain that it
serves, you may get Generic system error or
Possible loop detected in namespace directoryname:domainname error
messages.

For example, the machine altair might be a client of the subdoc.doc.com.
domain. If the master server of the subdoc.doc.com. subdomain is the machine

Problems and Solutions 521

sirius , then sirius is a client of the doc.com . domain. When using, specifying,
or changing domains, remember these rules to avoid confusion:

1. Client machines belong to a given domain or subdomain.

2. Servers and replicas that serve a given subdomain are clients of the domain above
the domain they are serving.

3. The only exception to Rule 2 is that the root master server and root replica servers
are clients of the same domain that they serve. In other words, the root master
and root replicas are all clients of the root domain.

Thus, in the example above, the fully qualified name of the altair machine is
alladin.subdoc.doc.com. The fully qualified name of the sirius machine is
sirius.doc.com. The name sirius.subdoc.doc.com. is wrong and will cause
an error because sirius is a client of doc.com. , not subdoc.doc.com.

Cannot Delete org_dir or groups_dir

Always delete org_dir and groups_dir before deleting their parent directory. If
you use nisrmdir to delete the domain before deleting the domain’s groups_dir
and org_dir , you will not be able to delete either of those two subdirectories.

Removal or Disassociation of NIS+ Directory from Replica
Fails
When removing or disassociating a directory from a replica server you must first
remove the directory’s org_dir and groups_dir subdirectories before removing
the directory itself. After each subdirectory is removed, you must run nisping on
the parent directory of the directory you intend to remove. (See “Removing a
Directory ” on page 203.)

If you fail to perform the nisping operation, the directory will not be completely
removed or disassociated.

If this occurs, you need to perform the following steps to correct the problem:

1. Remove /var/nis/rep/org_dir on the replica.

2. Make sure that org_dir. domain does not appear in
/var/nis/rep/serving_list on the replica.

3. Perform a nisping on domain.

4. From the master server, run nisrmdir −f replica_directory.

If the replica server you are trying to dissociate is down or out of communication,
the nisrmdir −s command will return a Cannot remove replica
name: attempt to remove a non-empty table error message.

In such cases, you can run nisrmdir −f −s replicaname on the master to force the
dissociation. Note, however, that if you use nisrmdir −f −s to dissociate an

522 Solaris Naming Administration Guide ♦ May 1999

out-of-communication replica, you must run nisrmdir −f −s again as soon as the
replica is back on line in order to clean up the replica’s /var/nis file system. If you
fail to rerun nisrmdir −f −s replicaname when the replica is back in service, the old
out-of-date information left on the replica could cause problems.

NIS+ Database Problems
This section covers problems related to the namespace database and tables. Common
symptoms include error messages with operative clauses such as::

� Abort_transaction: Internal database error

� Abort_transaction: Internal Error, log entry corrupt

� Callback: - select failed

� CALLBACK_SVC: bad argument

as well as when rpc.nisd fails.

See also “NIS+ Ownership and Permission Problems” on page 529.

Multiple rpc.nisd Parent Processes
Symptoms:

Various Database and transaction log corruption error messages containing the
terms:

� Corrupt log

� Log corrupted

� Log entry corrupt

� Corrupt database

� Database corrupted

Possible Causes:

You have multiple independent rpc.nisd daemons running. In normal operation,
rpc.nisd may spawn other child rpc.nisd daemons. This causes no problem.
However, if two parent rpc.nisd daemons are running at the same time on the
same machine, they will overwrite each other’s data and corrupt logs and databases.
(Normally, this could only occur if someone started running rpc.nisd by hand.)

Diagnosis:

Run ps -ef | grep rpc.nisd . Make sure that you have no more than one
parent rpc.nisd process.

Solution:

Problems and Solutions 523

If you have more than one “parent” rpc.nisd entries, you must kill all but one of
them. Use kill −9 process-id, then run the ps command again to make sure it has
died.

Note - If you started rpc.nisd with the −B option, you must also kill
the rpc.nisd_resolv daemon.

If an NIS+ database is corrupt, you will also have to restore it from your most recent
backup that contains an uncorrupted version of the database. You can then use the
logs to update changes made to your namespace since the backup was recorded.
However, if your logs are also corrupted, you will have to recreate by hand any
namespace modifications made since the backup was taken.

rpc.nisd Fails
If an NIS+ table is too large, rpc.nisd may fail.

Diagnosis:

Use nisls to check your NIS+ table sizes. Tables larger than 7k may cause rpc.nisd
to fail.

Solution:

Reduce the size of large NIS+ tables. Keep in mind that as a naming service NIS+ is
designed to store references to objects, not the objects themselves.

NIS+ and NIS Compatibility Problems
This section describes problems having to do with NIS compatibility with NIS+ and
earlier systems and the switch configuration file. Common symptoms include:

� The nsswitch.conf file fails to perform correctly.

� Error messages with operative clauses.

Error messages with operative clauses include:

� Unknown user

� Permission denied

� Invalid principal name

User Cannot Log In After Password Change
Symptoms:

524 Solaris Naming Administration Guide ♦ May 1999

New users, or users who recently changed their password are unable to log in at all,
or able to log in on one or more machines but not on others. The user may see error
messages with operative clauses such as:

� Unknown userusername”

� Permission denied

� Invalid principal name

First Possible Cause:

Password was changed on NIS machine.

If a user or system administrator uses the passwd command to change a password
on a Solaris operating environment machine running NIS in a domain served by
NIS+ namespace servers, the user’s password is changed only in that machine’s
/etc/passwd file. If the user then goes to some other machine on the network, the
user’s new password will not be recognized by that machine. The user will have to
use the old password stored in the NIS+ passwd table.

Diagnosis:

Check to see if the user’s old password is still valid on another NIS+ machine.

Solution:

Use passwd on a machine running NIS+ to change the user’s password.

Second Possible Cause:

Password changes take time to propagate through the domain.

Diagnosis:

Namespace changes take a measurable amount of time to propagate through a
domain and an entire system. This time might be as short as a few seconds or as
long as many minutes, depending on the size of your domain and the number of
replica servers.

Solution:

You can simply wait the normal amount of time for a change to propagate through
your domain(s). Or you can use the nisping org_dir command to resynchronize
your system.

nsswitch.conf File Fails to Perform Correctly
A modified (or newly installed) nsswitch.conf file fails to work properly.

Symptoms:

You install a new nsswitch.conf file or make changes to the existing file, but your
system does not implement the changes.

Possible Cause:

Problems and Solutions 525

Each time an nsswitch.conf file is installed or changed, you must reboot the
machine for your changes to take effect. This is because nscd caches the
nsswitch.conf file.

Solution:

Check your nsswitch.conf file against the information contained in the
nsswitch.conf man page. Correct the file if necessary, and then reboot the
machine.

NIS+ Object Not Found Problems
This section describes problem in which NIS+ was unable to find some object or
principal. Common symptoms include:

Error messages with operative clauses such as:

� Not found

� Not exist

� Can’t find suitable transport for name”

� Cannot find

� Unable to find

� Unable to stat

Syntax or Spelling Error
The most likely cause of some NIS+ object not being found is that you mistyped or
misspelled its name. Check the syntax and make sure that you are using the correct
name.

Incorrect Path
A likely cause of an “object not found” problem is specifying an incorrect path. Make
sure that the path you specified is correct. Also make sure that the NIS_PATH
environment variable is set correctly.

Domain Levels Not Correctly Specified
Remember that all servers are clients of the domain above them, not the domain they
serve. There are two exceptions to this rule:

� The root masters and root replicas are clients of the root domain.

526 Solaris Naming Administration Guide ♦ May 1999

� NIS+ domain names end with a period. When using a fully qualified name you must
end the domain name with a period. If you do not end the domain name with a
period, NIS+ assumes it is a partially qualified name. However, the domain name
of a machine should not end with a dot in the /etc/defaultdomain file. If you
add a dot to a machine’s domain name in the /etc/defaultdomain file, you
will get Could not bind to server serving domain name error messages and
encounter difficulty in connecting to the net on boot up.

Object Does Not Exist
The NIS+ object may not have been found because it does not exist, either because it
has been erased or not yet created. Use nisls −l in the appropriate domain to check
that the object exists.

Lagging or Out-of-Sync Replica
When you create or modify an NIS+ object, there is a time lag between the
completion of your action and the arrival of the new updated information at a given
replica. In ordinary operation, namespace information may be queried from a master
or any of its replicas. A client automatically distributes queries among the various
servers (master and replicas) to balance system load. This means that at any given
moment you do not know which machine is supplying you with namespace
information. If a command relating to a newly created or modified object is sent to a
replica that has not yet received the updated information from the master, you will
get an “object not found” type of error or the old out-of-date information. Similarly, a
general command such as nisls may not list a newly created object if the system
sends the nisls query to a replica that has not yet been updated.

You can use nisping to resync a lagging or out of sync replica server.

Alternatively, you can use the −Moption with most NIS+ commands to specify that
the command must obtain namespace information from the domain’s master server.
In this way you can be sure that you are obtaining and using the most up-to-date
information. (However, you should use the −Moption only when necessary because a
main point of having and using replicas to serve the namespace is to distribute the
load and thus increase network efficiency.)

Files Missing or Corrupt
One or more of the files in /var/nis/data directory has become corrupted or
erased. Restore these files from your most recent backup.

Problems and Solutions 527

Old /var/nis Filenames
In Solaris Release 2.4 and earlier, the /var/nis directory contained two files named
hostname.dict and hostname.log . It also contained a subdirectory named
/var/nis/ hostname. Starting with Solaris Release 2.5, the two files were renamed
trans.log and data.dict , and the subdirectory is named /var/nis/data .

Do not rename the /var/nis or /var/nis/data directories or any of the files in
these directories that were created by nisinit or any of the other NIS+ setup
procedures.

In Solaris Release 2.5, the content of the files were also changed and they are not
backward compatible with Solaris Release 2.4 or earlier. Thus, if you rename either
the directories or the files to match the Solaris Release 2.4 patterns, the files will not
work with either the Solaris Release 2.4 or the Solaris Release 2.5 or later versions of
rpc.nisd . Therefore, you should not rename either the directories or the files.

Blanks in Name
Symptoms:

Sometimes an object is there, sometimes it is not. Some NIS+ or UNIX commands
report that an NIS+ object does not exist or cannot be found, while other NIS+ or
UNIX commands do find that same object.

Diagnoses:

Use nisls to display the object’s name. Look carefully at the object’s name to see if
the name actually begins with a blank space. (If you accidentally enter two spaces
after the flag when creating NIS+ objects from the command line with NIS+
commands, some NIS+ commands will interpret the second space as the beginning
of the object’s name.)

Solution:

If an NIS+ object name begins with a blank space, you must either rename it without
the space or remove it and then recreate it from scratch.

Cannot Use Automounter
Symptoms:

You cannot change to a directory on another host.

Possible Cause:

Under NIS+, automounter names must be renamed to meet NIS+ requirements. NIS+
cannot access /etc/auto* tables that contain a period in the name. For example,
NIS+ cannot access a file named auto.direct .

Diagnosis:

528 Solaris Naming Administration Guide ♦ May 1999

Use nisls and niscat to determine if the automounter tables are properly
constructed.

Solution:

Change the periods to underscores. For example, change auto.direct to
auto_direct . (Be sure to change other maps that might reference these.)

Links To of From Table Entries Do Not Work
You cannot use the nisln command (or any other command) to create links
between entries in tables. NIS+ commands do not follow links at the entry level.

NIS+ Ownership and Permission Problems
This section describes problems related to user ownership and permissions. Common
symptoms include:

Error messages with operative clauses such as:

� Unable to stat name

� Unable to stat NIS+ directory name

� Security exception on LOCAL system

� Unable to make request

� Insufficient permission to . . .

� You name do not have secure RPC credentials

Another Symptom:

� User or root unable to perform any namespace task.

No Permission
The most common permission problem is the simplest: you have not been granted
permission to perform some task that you try to do. Use niscat −o on the object in
question to determine what permissions you have. If you need additional permission,
you, the owner of the object, or the system administrator can either change the
permission requirements of the object (as described in Chapter 10,) or add you to a
group that does have the required permissions (as described in Chapter 12).

No Credentials
Without proper credentials for you and your machine, many operations will fail. Use
nismatch on your home domain’s cred table to make sure you have the right

Problems and Solutions 529

credentials. See “Corrupted Credentials” on page 536 for more on credentials-related
problems.

Server Running at Security Level 0
A server running at security level 0 does not create or maintain credentials for NIS+
principals.

If you try to use passwd on a server that is running at security level 0, you will get
the error message: You name
do not have secure RPC credentials in NIS+ domain domainname.

Security level 0 is only to be used by administrators for initial namespace setup and
testing purposes. Level 0 should not be used in any environment where ordinary
users are active.

User Login Same as Machine Name
A user cannot have the same login ID as a machine name. When a machine is given
the same name as a user (or vice versa), the first principal can no longer perform
operations requiring secure permissions because the second principal’s key has
overwritten the first principal’s key in the cred table. In addition, the second
principal now has whatever permissions were granted to the first principal.

For example, suppose a user with the login name of saladin is granted namespace
read-only permissions. Then a machine named saladin is added to the domain.
The user saladin will no longer be able to perform any namespace operations
requiring any sort of permission, and the root user of the machine saladin will
only have read-only permission in the namespace.

Symptoms:

� The user or machine gets “permission denied ” type error messages.

� Either the user or root for that machine cannot successfully run keylogin .

� Security exception on LOCAL system. UNABLE TO MAKE REQUEST. error
message.

� If the first principal did not have read access, the second principal might not be
able to view otherwise visible objects.

Note - When running nisclient or nisaddcred , if the message Changing Key
is displayed rather than Adding Key , there is a duplicate user or host name already
in existence in that domain.

Diagnosis:

Run nismatch to find the host and user in the hosts and passwd tables to see if
there are identical host names and user names in the respective tables:

530 Solaris Naming Administration Guide ♦ May 1999

nismatch username passwd.org_dir

Then run nismatch on the domain’s cred table to see what type of credentials are
provided for the duplicate host or user name. If there are both LOCAL and DES
credentials, the cred table entry is for the user; if there is only a DES credential, the
entry is for the machine.

Solution:

Change the machine name. (It is better to change the machine name than to change
the user name.) Then delete the machine’s entry from the cred table and use
nisclient to reinitialize the machine as an NIS+ client. (If you wish, you can use
nistbladm to create an alias for the machine’s old name in the hosts tables.) If
necessary, replace the user’s credentials in the cred table.

Bad Credentials
See “Corrupted Credentials” on page 536.

NIS+ Security Problems
This section describes common password, credential, encryption, and other
security-related problems.

Security Problem Symptoms
Error messages with operative clauses such as:

� Authentication error

� Authentication denied

� Cannot get public key

� Chkey failed

� Insufficient permission to

� Login incorrect

� Keyserv fails to encrypt

� No public key

� Permission denied

� “Password [problems]”

User or root unable to perform any namespace operations or tasks. (See also “NIS+
Ownership and Permission Problems” on page 529.)

Problems and Solutions 531

Login Incorrect Message
The most common cause of a “login incorrect” message is the user mistyping the
password. Have the user try it again. Make sure the user knows the correct
password and understands that passwords are case-sensitive and also that the letter
“o” is not interchangeable with the numeral “0,” nor is the letter “l” the same as the
numeral “1.”

Other possible causes of the “login incorrect” message are:

� The password has been locked by an administrator. See “Locking a Password ” on
page 170 and “Unlocking a Password ” on page 170.

� The password has been locked because the user has exceeded an inactivity
maximum See “Specifying Maximum Number of Inactive Days” on page 177.

� The password has expired. See “Password Privilege Expiration” on page 175.

See Chapter 11 for general information on passwords.

Password Locked, Expired, or Terminated
A common cause of a Permission denied, password expired , type message
is that the user’s password has passed its age limit or the user’s password privileges
have expired. See Chapter 11 for general information on passwords.

� See “Setting a Password Age Limit ” on page 172.

� See “Password Privilege Expiration” on page 175.

Stale and Outdated Credential Information
Occasionally, you may find that even though you have created the proper credentials
and assigned the proper access rights, some client requests still get denied. This may
be due to out-of-date information residing somewhere in the namespace.

Storing and Updating Credential Information
Credential-related information, such as public keys, is stored in many locations
throughout the namespace. NIS+ updates this information periodically, depending
on the time-to-live values of the objects that store it, but sometimes, between
updates, it gets out of sync. As a result, you may find that operations that should
work, don’t work. Table A–2 lists all the objects, tables, and files that store
credential-related information and how to reset it.

532 Solaris Naming Administration Guide ♦ May 1999

TABLE A–2 Where Credential-Related Information is Stored

Item Stores To Reset or Change

cred table NIS+ principal’s secret key and
public key. These are the master
copies of these keys.

Use nisaddcred to create new credentials; it
updates existing credentials. An alternative is
chkey .

Directory object A copy of the public key of each
server that supports it.

Run the /usr/lib/nis/

nisupdkeys command on the directory object.

Keyserver The secret key of the NIS+
principal that is currently logged
in.

Run keylogin for a principal user or
keylogin −r for a principal workstation.

NIS+ daemon Copies of directory objects, which
in turn contain copies of their
servers’ public keys.

Kill the daemon and the cache manager. Then
restart both.

Directory cache A copy of directory objects, which
in turn contain copies of their
servers’ public keys.

Kill the NIS+ cache manager and restart it with
the nis_cachemgr −i command. The −i
option resets the directory cache from the
cold-start file and restarts the cache manager.

Cold-start file A copy of a directory object, which
in turn contains copies of its
servers’ public keys.

On the root master, kill the NIS+ daemon and
restart it. The daemon reloads new information
into the existing NIS_COLD_STARTfile.

For a client, first remove the cold-start and
shared directory files from /var/nis , and kill
the cache manager. Then re-initialize the
principal with nisinit −c . The principal’s
trusted server reloads new information into the
principal’s existing cold-start file.

passwd table A user’s password or a
workstation’s superuser password.

Use the passwd -r nisplus command. It
changes the password in the NIS+ passwd table
and updates it in the cred table.

passwd file A user’s password or a
workstation’s superuser password.

Use the passwd -r nisplus command,
whether logged in as superuser or as yourself,
whichever is appropriate.

passwd map

(NIS)

A user’s password or a
workstation’s superuser password.

Use passwd -r nisplus .

Problems and Solutions 533

Updating Stale Cached Keys

The most commonly encountered out-of-date information is the existence of stale
objects with old versions of a server’s public key. You can usually correct this
problem by running nisupdkeys on the domain you are trying to access. (See
Chapter 7, for information on using the nisupdkeys command.)

Because some keys are stored in files or caches, nisupdkeys cannot always correct
the problem. At times you might need to update the keys manually. To do that, you
must understand how a server’s public key, once created, is propagated through
namespace objects. The process usually has five stages of propagation. Each stage is
described below.

Stage 1: Server’s Public Key Is Generated

An NIS+ server is first an NIS+ client. So, its public key is generated in the same
way as any other NIS+ client’s public key: with the nisaddcred command. The
public key is then stored in the cred table of the server’s home domain, not of the
domain the server will eventually support.

Stage 2: Public Key Is Propagated to Directory Objects

Once you have set up an NIS+ domain and an NIS+ server, you can associate the
server with a domain. This association is performed by the nismkdir command.
When the nismkdir command associates the server with the directory, it also copies
the server’s public key from the cred table to the domain’s directory object. For
example, assume the server is a client of the doc.com. root domain, and is made
the master server of the sales.doc.com. domain.

. . . at the time
server is associated
with the directory

NIS+

nismkdir

Cred Table

Server’s public key is
copied from home domain’s
cred table to the

sales..doc.com.

doc.com.

Figure A–1 Public Key is Propagated to Directory Objects

Its public key is copied from the cred.org_dir.doc.com. domain and placed in
the sales.doc.com. directory object. This can be verified with the
niscat -o sales.doc.com . command.

Stage 3: Directory Objects Are Propagated Into Client Files

534 Solaris Naming Administration Guide ♦ May 1999

All NIS+ clients are initialized with the nisinit utility or with the nisclient
script.

Among other things, nisinit (or nisclient) creates a cold-start file
/var/nis/NIS_COLDSTART . The cold-start file is used to initialize the client’s
directory cache /var/nis/NIS_SHARED_DIRCACHE . The cold-start file contains a
copy of the directory object of the client’s domain. Since the directory object already
contains a copy of the server’s public key, the key is now propagated into the
cold-start file of the client.

In addition when a client makes a request to a server outside its home domain, a
copy of the remote domains directory object is stored in the client’s
NIS_SHARED_DIRCACHEfile. You can examine the contents of the client’s cache by
using the nisshowcache command, described on page 184.

This is the extent of the propagation until a replica is added to the domain or the
server’s key changes.

Stage 4: When a Replica is Added to the Domain

When a replica server is added to a domain, the nisping command (described on
page 185) is used to download the NIS+ tables, including the cred table, to the new
replica. Therefore, the original server’s public key is now also stored in the replica
server’s cred table.

Stage 5: When the Server’s Public Key Is Changed

If you decide to change DES credentials for the server (that is, for the root identity
on the server), its public key will change. As a result, the public key stored for that
server in the cred table will be different from those stored in:

� The cred table of replica servers (for a few minutes only)

� The main directory object of the domain supported by the server (until its
time-to-live expires)

� The NIS_COLDSTARTand NIS_SHARED_DIRCACHEfiles of every client of the
domain supported by server (until their time-to-live expires, usually 12 hours)

� The NIS_SHARED_DIRCACHEfile of clients who have made requests to the
domain supported by the server (until their time-to-live expires)

Most of these locations will be updated automatically within a time ranging from a
few minutes to 12 hours. To update the server’s keys in these locations immediately,
use the commands:

Problems and Solutions 535

TABLE A–3 Updating a Server’s Keys

Location Command See

Cred table of replica servers (instead of using
nisping , you can wait a few minutes until
the table is updated automatically)

nisping “The nisping Command ”
on page 211

Directory object of domain supported by
server

nisupdkeys “The nisupdkeys
Command” on page 114

NIS_COLDSTARTfile of clients nisinit −c “The nisinit Command ”
on page 207

NIS_SHARED_DIRCACHEfile of clients nis_cachemgr “The nis_cachemgr
Command ” on page 209

Note - You must first kill the existing nis_cachemgr before restarting
nis_cachemgr .

Corrupted Credentials
When a principal (user or machine) has a corrupt credential, that principal is unable
to perform any namespace operations or tasks, not even nisls . This is because a
corrupt credential provides no permissions at all, not even the permissions granted
to the nobody class.

Symptoms:

User or root cannot perform any namespace tasks or operations. All namespace
operations fail with a “permission denied” type of error message. The user or root
cannot even perform a nisls operation.

Possible Cause:

Corrupted keys or a corrupt, out-of-date, or otherwise incorrect /etc/.rootkey file.

Diagnosis:

Use snoop to identify the bad credential.

Or, if the principal is listed, log in as the principal and try to run an NIS+ command
on an object for which you are sure that the principal has proper authorization. For
example, in most cases an object grants read authorization to the nobody class. Thus,
the nisls object command should work for any principal listed in the cred table. If

536 Solaris Naming Administration Guide ♦ May 1999

the command fails with a “permission denied” error, then the principal’s credential is
likely corrupted.

Solution

� Ordinary user. Perform a keylogout and then a keylogin for that principal.

� Root or superuser. Run keylogout −f followed by keylogin −r .

Keyserv Failure
The keyserv is unable to encrypt a session. There are several possible causes for
this type of problem:

Possible Causes and Solutions:

� The client has not keylogged in. Make sure that the client is keylogged in. To
determine if a client is properly keylogged in, have the client run nisdefaults
−v (or run it yourself as the client). If (not authenticated) is returned on the
Principal Name line, the client is not properly keylogged in.

� The client (host) does not have appropriate LOCAL or DES credentials. Run
niscat on the client’s cred table to verify that the client has appropriate
credentials. If necessary, add credentials as explained in “Creating Credential
Information for NIS+ Principals” on page 100.

� The keyserv daemon is not running. Use the ps command to see if keyserv is
running. If it is not running, restart it and then do a keylogin .

� While keyserv is running, other long running processes that make secure RPC or
NIS+ calls are not. For example, automountd , rpc.nisd , and sendmail . Verify
that these processes are running correctly. If they are not, restart them.

Machine Previously Was an NIS+ Client
If this machine has been initialized before as an NIS+ client of the same domain, try
keylogin −r and enter the root login password at the Secure RPC password prompt.

No Entry in the cred Table
To make sure that an NIS+ password for the principal (user or host) exists in the
cred table, run the following command in the principal’s home domain

nisgrep -A cname= principal cred.org_dir. domainname

If you are running nisgrep from another domain, the domainname must be fully
qualified.

Problems and Solutions 537

Changed Domain Name
Do not change a domain name.

If you change the name of an existing domain you will create authentication
problems because the fully qualified original domain name is embedded in objects
throughout your network.

If you have already changed a domain name and are experiencing authentication
problems, or error messages containing terms like “malformed” or “illegal” in
relation to a domain name, change the domain name back to its original name. The
recommended procedure for renaming your domains is to create a new domain with
the new name, set up your machines as servers and clients of the new domain, make
sure they are performing correctly, and then remove the old domain.

When Changing a Machine to a Different Domain
If this machine is an NIS+ client and you are trying to change it to a client of a
different domain, remove the /etc/.rootkey file, and then rerun the nisclient
script using the network password supplied by your network administrator or taken
from the nispopulate script.

NIS+ and Login Passwords in /etc/passwd File
Your NIS+ password is stored in the NIS+ passwd table. Your user login password
may be stored in NIS+ passwd table or in your /etc/passwd file. (Your user
password and NIS+ password can be the same or different.) To change a password in
an /etc/passwd file, you must run the passwd command with the
nsswitch.conf file set to files or with the −r files flag.

The nsswitch.conf file specifies which password is used for which purpose. If the
nsswitch.conf file is directing system queries to the wrong location, you will get
password and permission errors.

Secure RPC Password and Login Passwords Are Different
When a principal’s login password is different from his or her Secure RPC password,
keylogin cannot decrypt it at login time because keylogin defaults to using the
principal’s login password, and the private key was encrypted using the principal’s
Secure RPC password.

When this occurs the principal can log in to the system, but for NIS+ purposes is
placed in the authorization class of nobody because the keyserver does not have a
decrypted private key for that user. Since most NIS+ environments are set up to deny
the nobody class create, destroy, and modify rights to most NIS+ objects this results
in “permission denied” types errors when the user tries to access NIS+ objects.

538 Solaris Naming Administration Guide ♦ May 1999

Note - In this context network password is sometimes used as a synonym for Secure
RPC password. When prompted for your “network password,” enter your Secure
RPC password.

To be placed in one of the other authorization classes, a user in this situation must
explicitly run the keylogin program and give the principal’s Secure RPC password
when keylogin prompts for password. (See “Keylogin” on page 108.)

But an explicit keylogin provides only a temporary solution that is good only for
the current login session. The keyserver now has a decrypted private key for the user,
but the private key in the user’s cred table is still encrypted using the user’s Secure
RPC password, which is different than the user’s login password. The next time the
user logs in, the same problem reoccurs. To permanently solve the problem the user
needs to change the private key in the cred table to one based on the user’s login ID
rather than the user’s Secure RPC password. To do this, the user need to run the
chkey program as described in “Changing Keys for an NIS+ Principal” on page 109.

Thus, to permanently solve a Secure RPC password different than login password
problems, the user (or an administrator acting for the user) must perform the
following steps:

1. Log in using the login password.

2. Run the keylogin program to temporarily get a decrypted private key stored in
the keyserver and thus gain temporary NIS+ access privileges.

3. Run chkey −pto permanently change the encrypted private key in the cred table
to one based on the user’s login password.

Preexisting /etc/.rootkey File
Symptoms:

Various insufficient permission to and permission denied error
messages.

Possible Cause:

An /etc/.rootkey file already existed when you set up or initialized a server or
client. This could occur if NIS+ had been previously installed on the machine and the
.rootkey file was not erased when NIS+ was removed or the machine returned to
using NIS or /etc files.

Diagnosis:

Run ls −l on the /etc directory and nisls -l org_dir and compare the date of
the /etc/.rootkey to the date of the cred table. If the /etc/.rootkey date is
clearly earlier than that of the cred table, it may be a preexisting file.

Solution:

Run keylogin −r as root on the problem machine and then set up the machine as a
client again.

Problems and Solutions 539

Root Password Change Causes Problem
Symptoms:

You change the root password on a machine, and the change either fails to take effect
or you are unable to log in as superuser.

Possible Cause:

Note - For security reasons, you should not have User ID 0 listed in the passwd
table.

You changed the root password, but root’s key was not properly updated. Either
because you forgot to run chkey −p for root or some problem came up.

Solution

Log in as a user with administration privileges (that is, a user who is a member of a
group with administration privileges) and use passwd to restore the old password.
Make sure that old password works. Now use passwd to change root’s password to
the new one, and then run chkey −p.

Caution - Once your NIS+ namespace is set up and running, you can change the
root password on the root master machine. But do not change the root master keys,
as these are embedded in all directory objects on all clients, replicas, and servers of
subdomains. To avoid changing the root master keys, always use the −p option when
running chkey as root.

NIS+ Performance and System Hang Problems
This section describes common slow performance and system hang problems.

Performance Problem Symptoms
Error messages with operative clauses such as:

� Busy try again later

� Not responding

Other common symptoms:

� You issue a command and nothing seems to happen for far too long.

� Your system, or shell, no longer responds to keyboard or mouse commands.

� NIS+ operations seem to run slower than they should or slower than they did
before.

540 Solaris Naming Administration Guide ♦ May 1999

Checkpointing
Someone has issued an nisping or nisping −C command. Or the rpc.nisd
daemon is performing a checkpoint operation.

Caution - Do not reboot! Do not issue any more nisping commands.

When performing a nisping or checkpoint, the server will be sluggish or may not
immediately respond to other commands. Depending on the size of your namespace,
these commands may take a noticeable amount of time to complete. Delays caused by
checkpoint or ping commands are multiplied if you, or someone else, enter several
such commands at one time. Do not reboot. This kind of problem will solve itself.
Just wait until the server finishes performing the nisping or checkpoint command.

During a full master-replica resync, the involved replica server will be taken out of
service until the resync is complete. Do not reboot—just wait.

Variable NIS_PATH

Make sure that your NIS_PATH variable is set to something clean and simple. For
example, the default: org_dir.$:$. A complex NIS_PATH, particularly one that
itself contains a variable, will slow your system and may cause some operations to
fail. (See “NIS_PATH Environment Variable” on page 57 for more information.)

Do not use nistbladm to set nondefault table paths. Nondefault table paths will
slow performance.

Table Paths
Do not use table paths because they will slow performance.

Too Many Replicas
Too many replicas for a domain degrade system performance during replication.
There should be no more than 10 replicas in a given domain or subdomain. If you
have more than five replicas in a domain, try removing some of them to see if that
improves performance.

Recursive Groups
A recursive group is a group that contains the name of some other group. While
including other groups in a group reduces your work as system administrator, doing
so slows down the system. You should not use recursive groups.

Problems and Solutions 541

Large NIS+ Database Logs at Start-up
When rpc.nisd starts up it goes through each log. If the logs are long, this process
could take a long time. If your logs are long, you may want to checkpoint them
using nisping −C before starting rpc.nisd .

The Master rpc.nisd Daemon Died
Symptoms:

If you used the −Moption to specify that your request be sent to the master server,
and the rpc.nisd daemon has died on that machine, you will get a “server not
responding” type error message and no updates will be permitted. (If you did not
use the −Moption, your request will be automatically routed to a functioning replica
server.)

Possible Cause:

Using uppercase letters in the name of a home directory or host can sometimes cause
rpc.nisd to die.

Diagnosis:

First make sure that the server itself is up and running. If it is, run
ps -ef | grep rpc.nisd to see if the daemon is still running.

Solution:

If the daemon has died, restart it. If rpc.nisd frequently dies, contact your service
provider.

No nis_cachemgr

Symptoms:

It takes too long for a machine to locate namespace objects in other domains.

Possible Cause:

You do not have nis_cachemgr running.

Diagnosis:

Run ps -ef | grep nis_cachemgr to see if it is still running.

Solution

Start nis_cachemgr on that machine.

Server Very Slow at Start-up After NIS+ Installation
Symptoms:

542 Solaris Naming Administration Guide ♦ May 1999

A server performs slowly and sluggishly after using the NIS+ scripts to install NIS+
on it.

Possible Cause:

You forgot to run nisping −C −a after running the nispopulate script.

Solution:

Run nisping −C −a to checkpoint the system as soon as you are able to do so.

niscat Returns: Server busy. Try Again

Symptoms:

You run niscat and get an error message indicating that the server is busy.

Possible Cause:

� The server is busy with a heavy load, such as when doing a resync.

� The server is out of swap space.

Diagnosis:

Run swap −s to check your server’s swap space.

Solution:

You must have adequate swap and disk space to run NIS+. If necessary, increase
your space.

NIS+ Queries Hang After Changing Host Name
Symptoms:

Setting the host name for an NIS+ server to be fully qualified is not recommended. If
you do so, and NIS+ queries then just hang with no error messages, check the
following possibilities:

Possible Cause:

Fully qualified host names must meet the following criteria:

� The domain part of the host name must be the same as the name returned by the
domainname command.

� After the setting the host name to be fully qualified, you must also update all the
necessary /etc and /etc/inet files with the new host name information.

� The host name must end in a period.

Solution:

Kill the NIS+ processes that are hanging and then kill rpc.nisd on that host or
server. Rename the host to match the two requirements listed above. Then reinitialize

Problems and Solutions 543

the server with nisinit . (If queries still hang after you are sure that the host is
correctly named, check other problem possibilities in this section.)

NIS+ System Resource Problems
This section describes problems having to do with lack of system resources such as
memory, disk space, and so forth.

Resource Problem Symptoms
Error messages with operative clauses such as:

� No memory

� Out of disk space

� “Cannot [do something] with log” type messages

� Unable to fork

Insufficient Memory
Lack of sufficient memory or swap space on the system you are working with will
cause a wide variety of NIS+ problems and error messages. As a short-term,
temporary solution, try to free additional memory by killing unneeded windows and
processes. If necessary, exit your windowing system and work from the terminal
command line. If you still get messages indicating inadequate memory, you will have
to install additional swap space or memory, or switch to a different system that has
enough swap space or memory.

Under some circumstances, applications and processes may develop memory leaks
and grow too large. you can check the current size of an application or process by
running:

ps -el

The sz (size) column shows the current memory size of each process. If necessary,
compare the sizes with comparable processes and applications on a machine that is
not having memory problems to see if any have grown too large.

Insufficient Disk Space
Lack of disk space will cause a variety of error messages. A common cause of
insufficient disk space is failure to regularly remove tmp files and truncatelog files.
log and tmp files grow steadily larger unless truncated. The speed at which these
files grow varies from system to system and with the system state. log files on a

544 Solaris Naming Administration Guide ♦ May 1999

system that is working inefficiently or having namespace problems will grow very
fast.

Note - If you are doing a lot of troubleshooting, check your log and tmp files
frequently. Truncate log files and remove tmp files before lack of disk space creates
additional problems. Also check the root directory and home directories for core files
and delete them.

The way to truncate log files is to regularly checkpoint your system (Keep in mind
that a checkpoint process may take some time and will slow down your system
while it is being performed, checkpointing also requires enough disk space to create
a complete copy of the files before they are truncated.)

To checkpoint a system, run nisping −C.

Insufficient Processes
On a heavily loaded machine it is possible that you could reach the maximum
number of simultaneous processes that the machine is configured to handle. This
causes messages with clauses like “unable to fork”. The recommended method of
handling this problem is to kill any unnecessary processes. If the problem persists,
you can reconfigure the machine to handle more processes as described in your
system administration documentation.

NIS+ User Problems
This section describes NIS+ problems that a typical user might encounter.

User Problem Symptoms
� User cannot log in.

� User cannot rlogin to other domain

User Cannot Log In
There are many possible reasons for a user being unable to log in:

� User forgot password. To set up a new password for a user who has forgotten the
previous one, run passwd for that user on another machine (naturally, you have
to be the NIS+ administrator to do this).

� Mistyping password. Make sure the user knows the correct password and
understands that passwords are case-sensitive and that the letter “o” is not

Problems and Solutions 545

interchangeable with the numeral “0,” nor is the letter “l” the same as the numeral
“1.”

� “Login incorrect” type message. For causes other than simply mistyping the
password, see “Login Incorrect Message ” on page 532.

� The user’s password privileges have expired (see “Password Privilege Expiration”
on page 175).

� An inactivity maximum has been set for this user, and the user has passed it (see
“Specifying Maximum Number of Inactive Days” on page 177).

� The user’s nsswitch.conf file is incorrect. The passwd entry in that file must be
one of the following five permitted configurations:

� passwd: files

� passwd: files nis

� passwd: files nisplus

� passwd: compat

� passwd: compat passwd_compat: nisplus

Any other configuration will prevent a user from logging in.

(See “nsswitch.conf File Requirements ” on page 159 for further details.)

User Cannot Log In Using New Password
Symptoms:

Users who recently changed their password are unable to log in at all, or are able to
log in on some machines but not on others.

Possible Causes:

� It may take some time for the new password to propagate through the network.
Have users try to log in with the old password.

� The password was changed on a machine that was not running NIS+ (see “User
Cannot Log In Using New Password” on page 546).

User Cannot Remote Log In to Remote Domain
Symptoms:

User tries to rlogin to a machine in some other domain and is refused with a
“Permission denied” type error message.

Possible Cause:

To rlogin to a machine in another domain, a user must have LOCAL credentials in
that domain.

546 Solaris Naming Administration Guide ♦ May 1999

Diagnosis:

Run nismatch username.domainname. cred.org_dir in the other domain to see if
the user has a LOCAL credential in that domain.

Solution:

Go to the remote domain and use nisaddcred to create a LOCAL credential for the
user in the that domain.

User Cannot Change Password
The most common cause of a user being unable to change passwords is that the user
is mistyping (or has forgotten) the old password.

Other possible causes:

� The password Min value has been set to be greater than the password Max value.
See “Setting Minimum Password Life ” on page 172.

� The password is locked or expired. See “Login Incorrect Message ” on page
532 and “Password Locked, Expired, or Terminated” on page 532.

Other NIS+ Problems
This section describes problems that do not fit any of the previous categories.

How to Tell if NIS+ Is Running
You may need to know whether a given host is running NIS+. A script may also
need to determine whether NIS+ is running.

You can assume that NIS+ is running if:

� nis_cachemgr is running.

� The host has a /var/nis/NIS_COLD_START file.

� nisls succeeds.

Replica Update Failure
Symptoms:

Error messages indicating that the update was not successfully complete. (Note that
the message: replica_update: number updates number errors indicates a
successful update.)

Possible Causes:

Problems and Solutions 547

Any of the following error messages indicate that the server was busy and that the
update should be rescheduled:

� Master server busy, full dump rescheduled

� replica_update error result was Master server busy full dump rescheduled, full
dump rescheduled

� replica_update: master server busy, rescheduling the resync

� replica_update: master server busy, will try later

� replica_update: nis dump result Master server busy, full dump rescheduled

� nis_dump_svc: one replica is already resyncing

(These messages are generated by, or in conjunction with, the NIS+ error code
constant: NIS_DUMPLATERone replica is already resyncing.)

These messages indicate that there was some other problem:

� replica_update: error result was ...

� replica_update: nis dump result nis_perror error string

� rootreplica_update: update failednis dump result nis_perror
string-variable: could not fetch object from master

(If rpc.nisd is being run with the −C (open diagnostic channel) option, additional
information may be entered in either the master server or replica server’s system log.

These messages indicate possible problems such as:

� The server is out of child processes that can be allocated.

� A read-only child process was requested to dump.

� Another replica is currently resynching.

Diagnosis:

Check both the replica and server’s system log for additional information. How
much, if any, additional information is recorded in the system logs depends on your
system’s error reporting level, and whether or not you are running rpc.nisd with
the −C option (diagnostics).

Solution:

In most cases, these messages indicate minor software problems which the system is
capable of correcting. If the message was the result of a command, simply wait for a
while and then try the command again. If these messages appear often, you can
change the threshold level in your /etc/syslog.conf file. See the syslog.conf
man page for details.

548 Solaris Naming Administration Guide ♦ May 1999

NIS Problems and Solutions
This section explains how to resolve problems encountered on networks running
NIS. It covers problems seen on an NIS client and those seen on an NIS server.

Before trying to debug n NIS server or client, review Chapter 18, which explains the
NIS environment. Then look for the subheading in this section that best describes
your problem.

Symptoms:
Common symptoms of NIS binding problems include:

� Messages saying that ypbind can’t find or communicate with a server.

� Messages saying server not responding.

� Messages saying NIS is unavailable

� Commands on a client limp along in background mode or function much slower
than normal.

� Commands on a client hang. Sometimes commands hang even though the system
as a whole seems fine and you can run new commands.

� Commands on a client crash with obscure messages, or no message at all.

NIS Problems Affecting One Client
If only one or two clients are experiencing symptoms that indicate NIS binding
difficulty, the problems probably are on those clients. If many NIS clients are failing
to bind properly, the problem probably exists on one or more of the NIS servers (see
“NIS Problems Affecting Many Clients” on page 553).

ypbind Not Running on Client
One client has problems, but other clients on the same subnet are operating normally.
On the problem client, run ls −l on a directory such as /usr that contains files
owned by many users, including some not in the client /etc/passwd file. If the
resulting display lists file owners who are not in the local /etc/passwd as numbers,
rather than names, this indicates that NIS service is not working on the client.

These symptoms usually mean that the client ypbind process is not running. Run
ps −e and check for ypbind . If you do not find it, log in as superuser and start
ypbind by typing:

Problems and Solutions 549

client# /usr/lib/netsvc/yp/ypstart

Missing or Incorrect Domain Name
One client has problems, the other clients are operating normally, but ypbind is
running on the problem client. The client may have an incorrectly set domain.

On the client, run the domainname command to see which domain name is set.

Client#7 domainname neverland.com

Compare the output with the actual domain name in /var/yp on the NIS master
server. The actual NIS domain is shown as a subdirectory in the /var/yp directory.

Client#7 ls /var/yp...
-rwxr-xr-x 1 root Makefile
drwxr-xr-x 2 root binding
drwx------ 2 root doc.com
...

If the domain name returned by running domainname on a machine is not the same
as the server domain name listed as a directory in /var/yp , the domain name
specified in the machine’s /etc/defaultdomain file is incorrect. Log in as
superuser and correct the client’s domain name in the machine’s
/etc/defaultdomain file. This assures that the domain name is correct every time
the machine boots. Now reboot the machine.

Note - The domain name is case-sensitive.

Client Not Bound to Server
If your domain name is set correctly, ypbind is running, and commands still hang,
then make sure that the client is bound to a server by running the ypwhich
command. If you have just started ypbind , then run ypwhich several times
(typically, the first one reports that the domain is not bound and the second succeeds
normally).

No Server Available
If your domain name is set correctly, ypbind is running, and you get messages
indicating that the client cannot communicate with a server, this may indicate a
number of different problems:

� Does the client have a /var/yp/binding/ domainname/ypservers file
containing a list of servers to bind to? If not, run ypinit −c and specify in order
of preference the servers that this client should bind to.

550 Solaris Naming Administration Guide ♦ May 1999

� If the client does have a /var/yp/binding/ domainname/ypservers file, are
there enough servers listed in it if one or two become unavailable? If not, add
additional servers to the list by running yppinit −c .

� If none of the servers listed in the client’s ypservers file are available, the client
searches for an operating server using broadcast mode. If there is a functioning
server on the client’s subnet, the client will find it (though performance may be
slowed during the search). If there are no functioning servers on the client’s
subnet can solve the problem in several ways:

� If the client has no server on the subnet and no route to one, you can install a
new slave server on that subnet.

� You can make sure your routers are configured to pass broadcast packets so
that the client can use broadcast to find a server on another subnet. You can
use the netstat −r command to verify the route.

� If there should be a route, but it is not working, make sure that the route
daemon in.routed/in.rdisc is running. If it is not running, start it.

Note - For reasons of security and administrative control it is preferable to specify
the servers a client is to bind to in the client’s ypservers file rather than have the
client search for servers through broadcasting. Broadcasting ties up the network,
slows the client, and prevents you from balancing server load by listing different
servers for different clients.

� Do the servers listed in a clients ypservers file have entries in the /etc/hosts
file? If not, add the servers to the NIS maps hosts input file and rebuild your maps
by running yppinit −c or ypinit −s as described “Working With NIS Maps” on
page 314.

� Is the /etc/nsswitch.conf file set up to consult the machine’s local hosts file
in addition to NIS? See Chapter 2 for more information on the switch.

� Is the /etc/nsswitch.conf file set up to consult files first for services and
rpc ?

ypwhich Displays Are Inconsistent
When you use ypwhich several times on the same client, the resulting display varies
because the NIS server changes. This is normal. The binding of the NIS client to the
NIS server changes over time when the network or the NIS servers are busy.
Whenever possible, the network stabilizes at a point where all clients get acceptable
response time from the NIS servers. As long as your client machine gets NIS service,
it does not matter where the service comes from. For example, an NIS server
machine may get its own NIS services from another NIS server on the network.

Problems and Solutions 551

When Server Binding is Not Possible
In extreme cases where local server binding is not possible, use of the ypset
command may temporarily allow binding to another server, if available, on another
network or subnet. However, in order to use the −ypset option, ypbind must be
started with either the −ypset or −ypsetme options.

Note - For security reasons, the use of the −ypset and −ypsetme options should be
limited to debugging purposes under controlled circumstances. Use of the −ypset
and −ypsetme options can result in serious security breaches because while they are
operative anyone can then alter server bindings causing trouble for others and
permitting unauthorized access to sensitive data. If you must start ypbind with
these options, once you have fixed the problem you should kill ypbind and restart it
again without those options.

ypbind Crashes
If ypbind crashes almost immediately each time it is started, look for a problem in
some other part of the system. Check for the presence of the rpcbind daemon by
typing:

% ps -ef | grep rpcbind

If rpcbind is not present or does not stay up or behaves strangely, consult your
RPC documentation.

You may be able to communicate with rpcbind on the problematic client from a
machine operating normally. From the functioning machine, type:

% rpcinfo client

If rpcbind on the problematic machine is fine, rpcinfo produces the following
output:

program version netid address service owner
...
100007 2 udp 0.0.0.0.2.219 ypbind superuser
100007 1 udp 0.0.0.0.2.219 ypbind superuser
100007 1 tcp 0.0.0.0.2.220 ypbind superuser
100007 2 tcp 0.0.0.0.128.4 ypbind superuser
100007 2 ticotsord \000\000\020H ypbind superuser
100007 2 ticots \000\000\020K ypbind superuser
...

Your machine will have different addresses. If they are not displayed, ypbind has
been unable to register its services. Reboot the machine and run rpcinfo again. If
the ypbind processes are there and they change each time you try to restart

552 Solaris Naming Administration Guide ♦ May 1999

/usr/lib/netsvc/yp/ypbind , reboot the system, even if the rpcbind daemon is
running.

NIS Problems Affecting Many Clients
If only one or two clients are experiencing symptoms that indicate NIS binding
difficulty, the problems probably are on those clients (see “NIS Problems Affecting
One Client” on page 549). If many NIS clients are failing to bind properly, the
problem probably exists on one or more of the NIS servers.

Network or Servers are Overloaded
NIS can hang if the network or NIS servers are so overloaded that ypserv cannot
get a response back to the client ypbind process within the time-out period.

Under these circumstances, every client on the network experiences the same or
similar problems. In most cases, the condition is temporary. The messages usually go
away when the NIS server reboots and restarts ypserv , or when the load on the NIS
servers or network itself decreases.

Server Malfunction
Make sure the servers are up and running. If you are not physically near the servers,
use the ping command.

NIS Daemons Not Running
If the servers are up and running, try to find a client machine behaving normally,
and run the ypwhich command. If ypwhich does not respond, kill it. Then log in as
root on the NIS server and check if the NIS ypbind process is running by entering:

ps -e | grep yp

Note - Do not use the −f option with ps because this option attempts to translate
user IDs to names which causes more name service lookups that may not succeed.

If either the ypbind or ypserv daemons are not running, kill them and then restart
them by entering:

/usr/lib/netsvc/yp/ypstop
/usr/lib/netsvc/yp/ypstart

Problems and Solutions 553

If both the ypserv and ypbind processes are running on the NIS server, type:

ypwhich

If ypwhich does not respond, ypserv has probably hung and should be restarted.
While logged in as root on the server, kill ypserv and restart it by typing:

/usr/lib/netsvc/yp/ypstop
/usr/lib/netsvc/yp/ypstart

Servers Have Different Versions of an NIS Map
Because NIS propagates maps among servers, occasionally you may find different
versions of the same map on various NIS servers on the network. This version
discrepancy is normal add acceptable if the differences do not last for more than a
short time.

The most common cause of map discrepancy is that something is preventing normal
map propagation. For example, an NIS server or router between NIS servers is
down. When all NIS servers and the routers between them are running, ypxfr
should succeed.

If the servers and routers are functioning properly, check the following:

� Log ypxfr output (see “Logging ypxfr Output” on page 554).

� Check the control files (see “Check the crontab File and ypxfr Shell Script” on
page 555).

� Check the ypservers map on the master (see “Check the ypservers Map” on
page 555).

Logging ypxfr Output
If a particular slave server has problems updating maps, log in to that server and run
ypxfr interactively. If ypxfr fails, it tells you why it failed, and you can fix the
problem. If ypxfr succeeds, but you suspect it has occasionally failed, create a log
file to enable logging of messages. To create a log file, enter:

ypslave# cd /var/yp
ypslave# touch ypxfr.log

This creates a ypxfr.log file that saves all output from ypxfr .

The output resembles the output ypxfr displays when run interactively, but each line
in the log file is time stamped. (You may see unusual ordering in the time-stamps.
That is okay—the time-stamp tells you when ypxfr started to run. If copies of
ypxfr ran simultaneously but their work took differing amounts of time, they may

554 Solaris Naming Administration Guide ♦ May 1999

actually write their summary status line to the log files in an order different from that
which they were invoked.) Any pattern of intermittent failure shows up in the log.

Note - When you have fixed the problem, turn off logging by removing the log file.
If you forget to remove it, it continues to grow without limit.

Check the crontab File and ypxfr Shell Script
Inspect the root crontab file, and check the ypxfr shell script it invokes.
Typographical errors in these files can cause propagation problems. Failures to refer
to a shell script within the /var/spool/cron/crontabs/root file, or failures to
refer to a map within any shell script can also cause errors.

Check the ypservers Map
Also, make sure that the NIS slave server is listed in the ypservers map on the
master server for the domain. If it is not, the slave server still operates perfectly as a
server, but yppush does not propagate map changes to the slave server.

Work Around
If the NIS slave server problem is not obvious, you can work around it while you
debug using rcp or ftp to copy a recent version of the inconsistent map from any
healthy NIS server. For instance, here is how you might transfer the problem map:

ypslave# rcp ypmaster:/var/yp/ mydomain/ map.* /var/yp/ mydomain

Here the * character has been escaped in the command line, so that it will be
expanded on ypmaster, instead of locally on ypslave.

ypserv Crashes
When the ypserv process crashes almost immediately, and does not stay up even
with repeated activations, the debug process is virtually identical to that described in
“ypbind Crashes” on page 552. Check for the existence of the rpcbind daemon as
follows:

ypserver% ps -e | grep rpcbind

Reboot the server if you do not find the daemon. Otherwise, if the daemon is
running, type the following and look for similar output:

Problems and Solutions 555

% rpcinfo -p ypserver
program vers proto port service

100000 4 tcp 111 portmapper
100000 3 tcp 111 portmapper
100068 2 udp 32813 cmsd
...
100007 1 tcp 34900 ypbind
100004 2 udp 731 ypserv
100004 1 udp 731 ypserv
100004 1 tcp 732 ypserv
100004 2 tcp 32772 ypserv

Your machine may have different port numbers. The four entries representing the
ypserv process are:

100004 2 udp 731 ypserv
100004 1 udp 731 ypserv
100004 1 tcp 732 ypserv
100004 2 tcp 32772 ypserv

If they are not present, and ypserv is unable to register its services with rpcbind ,
reboot the machine. If they are present, deregister the service from rpcbind before
restarting ypserv . To deregister the service from rpcbind , on the server type:

rpcinfo -d number 1
rpcinfo -d number 2

Where number is the ID number reported by rpcinfo (100004 , in the example above).

DNS Problems and Solutions
This section describes some common DNS problems and how to solve them.

Clients Can Find Machine by Name but Server
Cannot
Symptoms:

DNS clients can find machines by either IP address or by host name, but the server
can only find machines by their IP addresses.

556 Solaris Naming Administration Guide ♦ May 1999

Probable cause and solution:

This is most likely caused by omitting DNSfrom the hosts line of the server’s
nsswitch.conf file. For example, a bad hosts line might look like this:
hosts: files

When using DNS you must include dns in the hosts record of every machine’s
nsswitch.conf file. For example:

hosts: dns nisplus [NOTFOUND=return] files

or

hosts: nisplus dns [NOTFOUND=return] files

Changes Do Not Take Effect or Are Erratic
Symptom:

You add or delete machines or servers but your changes are not recognized or do not
take effect. Or in some instances the changes are recognized and at other times they
are not in effect.

Probable cause:

The most likely cause is that you forgot to increment the SOA serial number on the
primary master server after you made your change. Since there is no new SOA
number, your secondary servers do not update their data to match that of the
primary so they are working with the old, unchanged data files.

Another possible cause is that the SOA serial number in one or more of the primary
data files was set to a value lower than the corresponding serial number on your
secondary servers. This could happen, for example, if you deleted a file on the
primary and then recreated it from scratch using an input file of some sort.

A third possible cause is that you forgot to send a HUP signal to the primary server
after making changes to the primary’s data files.

Diagnosis and solution:

First, check the SOA serial numbers in the data file that you changed and the
corresponding file on the secondary server.

� If the SOA serial number in the primary file is equal to, or less than, the serial
number in the secondary file, increase the serial number on the primary’s file so
that it is greater than the number in the secondary file. For example, if the SOA
number in both files is 37 , change the number in the primary’s file to 38 . The next
time the secondary checks with the primary, it will load the new data. (There are
utilities that can force a primary to immediately transfer data to the secondaries, if
you have one of these utilities you can update the secondary without waiting for it
to check the primary.)

� Review the syslog output for the most recent named nnnn restarted or named
nnn reloading nameserver entry. If the timestamp for that entry is before the

Problems and Solutions 557

time you finished making changes to the file, either reboot the server or force it to
read the new data as explained in “Forcing in.named to Reload DNS Data” on
page 507.

DNS Client Cannot Lookup “Short” Names
Symptoms:

Client can lookup fully qualified names but not short names.

Possible cause and solution:

Check the client’s /etc/resolv.conf file for spaces at the end of the domain
name. No spaces or tabs are allowed at the end of the domain name.

Reverse Domain Data Not Correctly Transferred to
Secondary
While zone domain-named data is properly transferred from the zone primary
master server to a zone secondary server, the reverse domain data is not being
transferred. In other words, the host.rev file on the secondary is not being
properly updated from the primary.

Possible causes:

Syntax error in the secondary server’s boot file.

Diagnosis and Solution:

Check the secondary server’s boot file. Make sure that the primary server’s IP
address is listed for the reverse zone entries just as it is for the hosts data.

For example, the following boot file is incorrect because the primary server’s IP
address (129.146.168.119) is missing from the secondary in-addr.arpa record:

;
; /etc/named.boot file for dnssecondary
directory /var/named
secondary doc.com 129.146.168.119 dnshosts.bakup
secondary 168.146.129.in-addr.arpa doc.rev.bakup

This is what the correct file should look like:

558 Solaris Naming Administration Guide ♦ May 1999

;
; /etc/named.boot file for dnssecondary

directory /var/named
secondary doc.com 129.146.168.119 dnshosts.bakup
secondary 168.146.129.in-addr.arpa 129.146.168.119 doc.rev.bakup

Server Failed and Zone Expired Problems
When a secondary server cannot obtain updates from its master, it logs a
master unreachable message. If the problem is not corrected, the secondary
expires the zone and stops answering requests from clients. When that happens,
users start seeing server failed messages.

Symptoms:

� Masters for secondary zone domain unreachable messages in syslog .

� Secondary zone domain expired messages in syslog .

� *** domain Can’t find name: server failed messages to users.

Note that if the problem lies with a secondary server, some users could still be
successfully obtaining DNS information from the master and thus operating without
experiencing any difficulty.

Possible causes:

The two most likely causes for these problems are network failure and a wrong IP
address for the master in the secondary’s boot file.

Diagnosis and solution:

� Check that the secondary’s boot file contains the correct IP address for the master.
Check the line:

secondary domain IPaddress hostsfile

Make sure that the IP address of the master matches the master’s actual IP address
and the address for the master specified in the hosts file. If the IP address is wrong,
correct it, and then reboot the secondary.

� If the master’s IP address is correct, make sure the master is up and running
correctly by pinging the master’s IP address: For example, to ping the master at IP
address 129.146.168.119 , you would enter:

% ping 129.146.168.119 -n 10

� If the master does not respond to the ping, make sure it is up and running
properly.

� If the master is running okay, use ps to make sure it is running named. If it is not
running named, reboot it.

Problems and Solutions 559

� If the master is correctly running named, you most likely have a network problem.

rlogin , rsh , and ftp Problems
Symptoms:

� Users are asked for password when they try to rlogin to a machine in another
domain over the Internet.

� Users are denied access when they try to ftp to a machine in another domain
over the Internet.

� Users are denied access when they try to use rlogin or rsh to a machine on their
own network.

Possible causes:

� The user is working at a machine that does not have a PTRrecord in the primary
master server’s hosts.rev file.

� A missing or incorrect delegation of a sub-domain in the hosts.rev file.

Diagnosis and solution:

Check the appropriate hosts.rev file and make sure there is a PTR record for the
user’s machine. For example, if the user is working at the machine
altair.doc.com with an IP address of 129.146.168.46 , the doc.com primary
master server’s doc.rev file should have an entry like:

46 IN PTR altair.doc.com.

If the record is missing, add it to the hosts.rev file and then reboot the server or
reload its data as explained in “Forcing in.named to Reload DNS Data” on page 507.

Check and correct the NS entries in the hosts.rev files and then reboot the server
or reload its data as explained in “Forcing in.named to Reload DNS Data” on page
507.

Other DNS Syntax Errors
Symptoms:

Error messages in console or syslog with operative phrases like the following are
most often caused by syntax errors in DNS data and boot files:

� No such...

� Unknown field...

� Non-authoritative answer:

� Database format error...

560 Solaris Naming Administration Guide ♦ May 1999

� illegal or (illegal)

� error receiving zone transfer

Check the relevant files for spelling and syntax errors.

A common syntax error is misuse of the trailing dot in domain names (either using
the dot when you should not, or not using it when you should). See “Trailing Dots in
Domain Names ” on page 505.

FNS Problems and Solutions
This section presents problem scenarios with a description of probable causes,
diagnoses, and solutions.

See “FNS Error Messages” on page 569 for general information about FNS error
messages, and Appendix B.

Cannot Obtain Initial Context
Symptom:

You get the message Cannot obtain initial context .

Possible Cause:

This is caused by an installation problem.

Diagnosis:

Check that FNS has been installed properly by looking for the file,
/usr/lib/fn/fn_ctx_initial.so .

Solution:

Install the fn_ctx_initial.so library.

Nothing in Initial Context
Symptom:

When you run fnlist to see what is in the initial context, you see nothing.

Possible Cause:

This is caused by an NIS+ configuration problem. The organization associated with
the user and machine running the fn* commands do not have an associated
ctx_dir directory.

Problems and Solutions 561

Diagnosis:

Use the nisls command to see whether there is a ctx_dir directory.

Solution:

If there is no ctx_dir directory, run fncreate -t org/ nis+_domain_name/ to
create the ctx_dir directory.

“No Permission” Messages (FNS)
Symptom:

You get no permission messages.

Possible Cause:

“No permission” messages mean that you do not have access to perform the
command.

Diagnosis:

Check permission using the appropriate NIS+ commands, described in “Advanced
FNS and NIS+ Issues” on page 423. Use the nisdefaults command to determine
your NIS+ principal name.

Another area to check is whether you are using the right name. For example, org//
names the context of the root organization. Make sure you have permission to
manipulate the root organization. Or maybe you meant to specify myorgunit/ ,
instead.

Solution:

If you do have permission, then the appropriate credentials probably have not been
acquired.

This could be caused by the following:

� A keylogin has not been performed (defaults to NIS+ principal “nobody”)

� A keylogin was made to a source other than NIS+

Check that the /etc/nsswitch.conf file has a publickey: nisplus entry. This
might manifest itself as an authentication error.

fnlist Does not List Suborganizations
Symptom:

You run fnlist with an organization name, expecting to see suborganizations, but
instead see nothing.

Possible Cause:

562 Solaris Naming Administration Guide ♦ May 1999

This is caused by an NIS+ configuration problem. Suborganizations must be NIS+
domains. By definition, an NIS+ domain must have a subdirectory named org_dir .

Diagnosis:

Use the nisls command to see what subdirectories exist. Run nisls on each
subdirectory to verify which subdirectories have an org_dir . The subdirectories
with an org_dir are suborganizations.

Solution:

Not applicable.

Cannot Create Host- or User-related Contexts
Symptom:

When you run fncreate −t for the user , username , host , or hostname contexts,
nothing happens.

Possible Cause:

You have not set the NIS_GROUPenvironment variable. When you create a user or
host context it is owned by the host or user, and not by the administrator who set up
the namespace. Therefore, fncreate requires that the NIS_GROUPvariable be set to
enable the administrators who are part of that group to subsequently manipulate the
contexts.

Diagnosis:

Check the NIS_GROUPenvironment variable.

Solution:

The NIS_GROUPenvironment variable should be set to the group name of the
administrators who will administer the contexts.

Cannot Remove a Context You Created
Symptom:

When you run fndestroy on the host or user context the context is not removed.

Possible Cause:

You do not own the host or user context. When you create a user or host context
it is owned by the host or user, and not by the administrator who set up the
namespace.

Diagnosis:

Check the NIS_GROUPenvironment variable.

Problems and Solutions 563

Solution:

The NIS_GROUPenvironment variable needs to be set to the group name of the
administrator who will administer the contexts.

Name in Use with fnunbind
Symptom:

You get “name in use” when trying to remove bindings. It works for certain names
but not for others.

Possible Cause:

You cannot unbind the name of a context. This restriction is in place to avoid leaving
behind contexts that have no name (“orphaned contexts”).

Diagnosis:

Run the fnlist command on the name to verify that it is a context.

Solution:

If the name is a context, use the fndestroy command to destroy the context.

Name in Use with fnbind /fncreate -s
Symptom:

You use the −s option with fnbind and fncreate , but for certain names you get
“name in use.”

Possible Cause:

fnbind −s and fncreate −soverwrite the existing binding if it already exists; but if
the old binding is one that must be kept to avoid orphaned contexts, the operation
fails with a “name in use” error because the binding could not be removed. This is
done to avoid orphaned contexts.

Diagnosis:

Run the fnlist command on the name to verify that it is a context.

Solution:

Run the fndestroy command to remove the context before running fnbind or
fncreate on the same name.

564 Solaris Naming Administration Guide ♦ May 1999

fndestroy /fnunbind Does Not Return
Operation Failed
Symptom:

When you do an fndestroy or fnunbind on certain names that you know do not
exist, you receive no indication that the operation failed.

Possible Cause:

The operation did not fail. The semantics of fndestroy and fnunbind are that if
the terminal name is not bound, the operation returns success.

Diagnosis:

Run the fnlookup command on the name. You should receive the message, “name
not found.”

Solution:

Not applicable.

Problems and Solutions 565

566 Solaris Naming Administration Guide ♦ May 1999

APPENDIX B

Error Messages

This section alphabetically lists some common error messages. For each message
there is an explanation and, where appropriate, a solution or a cross-reference to
some other portion of this manual.

Appendix A, describes various type of problems and their solutions. Where
appropriate, error messages in this appendix are cross-referenced to the
corresponding section in Appendix A.

About Error Messages
Some of the error messages documented in this chapter are documented more fully
in the appropriate man pages.

Some of the error messages documented in this chapter are documented more fully
in the appropriate man pages.

Error Message Context
Error messages may appear in pop-up windows, shell tool command lines, user
console window, or various log files. You can raise or lower the severity threshold
level for reporting error conditions in your /etc/syslog.conf file.

In the most cases, the error messages that you see are generated by the commands
you issued or the container object (file, map, table or directory) your command is
addressing. However, in some cases an error message may be generated by a server
invoked in response to your command (these messages usually show in syslog).
For example, a “permission denied ” message most likely refers to you, or the

567

machine you are using, but it could also be caused by software on a server not
having the correct permissions to carry out some function passed on to it by your
command or your machine.

Similarly, some commands cause a number of different objects to be searched or
queried. Some of these objects may not be obvious. Any one of these objects could
return an error message regarding permissions, read-only state, unavailability, and so
forth. In such cases the message may or may not be able to inform you of which
object the problem occurred in.

In normal operation, the naming software and servers make routine function calls.
Sometimes those calls fail and in doing so generate an error message. It occasionally
happens that before a client or server processes your most recent command, then
some other call fails and you see the resulting error message. Such a message might
appear as if it were in response to your command, when in fact it is in response to
some other operation.

Note - When working with a namespace you may encounter error messages
generated by remote procedure calls. These RPC error messages are not documented
here. Check your system documentation.

Context-Sensitive Meanings
A single error message may have slightly different meanings depending on which
part of various naming software applications generated the message. For example,
when a “Not Found ” type message is generated by the nisls command, it means
that there are no NIS+ objects that have the specified name, but when it is generated
by the nismatch command it means that no table entries were found that meet the
search criteria.

How Error Messages Are Alphabetized
The error messages in this appendix are sorted alphabetically according to the
following rules:

� Capitalization is ignored. Thus, messages that begin with “A” and “a” are
alphabetized together.

� Nonalphabetic symbols are ignored. Thus, a message that begins with
_svcauth_des is listed with the other messages that begin with the letter “S.”

� Error messages beginning with (or containing) the word NIS+ are alphabetized
after messages beginning with (or containing) the word NIS.

� Some error messages may be preceded by a date or the name of the host,
application, program, or routine that generated the error message, followed by a

568 Solaris Naming Administration Guide ♦ May 1999

colon. In these cases, the initial name of the command is used to alphabetize the
message/

� Many messages contain variables such as user IDs, process numbers, domain
names, host names, and so forth. In this appendix, these variables are indicated by
an italic typeface. Because variables could be anything, they are not included in the
sorting of the messages listed in this appendix. For example, the actual message
sales: is not a table (where sales is a variable) would be listed in this
appendix as: name: is not a table and would be alphabetized as: is not a table
among those messages beginning with the letter “I”.

� Error messages that begin with asterisks, such as **ERROR: domainname does not
exist, are generated by the NIS+ installation and setup scripts. They are
alphabetized according to their first letter, ignoring the asterisks.

Numbers in Error Messages
� Many DNS or other messages include an IP address. IP addresses are indicated by

n.n.n.n.

� Some error messages include numbers such as process ID numbers, number of
items, and so forth. Numbers in error messages are indicated: nnnn.

FNS Error Messages
FNS messages are encapsulated in the FN_status_t object as status codes. See the
FN_status_t man page for the corresponding status codes

When an error occurs, FNS commands print out the remaining part of the name on
which the operation failed. The part of the name that has not been printed has been
processed successfully.

For example, a user attempted to create a context for org//service/trading/bb .
The name org//service/ was resolved successfully, but trading was not found
in the context named by org//service/ . Thus, trading/bb is displayed as the
part of the name that remains when the operation failed:

Error in creating ’org//service/trading/bb’: Name Not Found: ’trading/bb’

In another example, a user attempted to destroy the context
org//service/dictionary/english , but could not carry out the operation
because the context named was not empty. The pair of single quotes (’’) indicates
that FNS was able to resolve the complete name given, but could not complete the
operation as requested:

Error in destroying ’org//service/dictionary/english’: Context Not Empty: ’’

Error Messages 569

Common Namespace Error Messages
abort_transaction: Failed to action NIS+ objectname

The abort_transaction routine failed to back out of an incomplete transaction
due to a server crash or some other unrecoverable error. See “NIS+ Database
Problems” on page 523 for further information.

abort_transaction: Internal database error abort_transaction:
Internal error, log entry corrupt NIS+ objectname

These two messages indicate some form of corruption in a namespace database or
log. See “NIS+ Database Problems” on page 523 for additional information.

add_cleanup: Cant allocate more rags.

This message indicates that your system is running low on available memory. See
“Insufficient Memory” on page 544 for information on insufficient memory
problems.

add_pingitem: Couldn’t add directoryname to pinglist (no memory)

See “Insufficient Memory” on page 544 for information on low memory problems.

add_update: Attempt add transaction from read only child.
add_update Warning: attempt add transaction from read only child

An attempt by a read-only child rpc.nisd process to add an entry to a log. An
occasional appearance of this message in a log is not serious. If this message
appears frequently, contact the Sun Solutions Center.

Attempting to free a free rag!

This message indicates a software problem with rpc.nisd . The rpc.nisd
should have aborted. Run ps -ef | grep rpc.nisd to see if rpc.nisd is still
running. If it is, kill it and restart it with the same options as previously used. If it
is not running, restart it with the same options as previously used. Check
/var/nis to see if a core file has been dumped. If there is a core file, delete it.

Note - If you started rpc.nisd with the −YB option, you must also kill the
rpc.nisd_reply daemon.

Attempt to remove a non-empty table

An attempt has been made by nistbladm to remove an NIS+ table that still
contains entries. Or by nisrmdir to remove a directory that contains files or
subdirectories.

570 Solaris Naming Administration Guide ♦ May 1999

� If you are trying to delete a table, use niscat to check the contents of the table
and nistbladm to delete any existing contents.

� If you are trying to delete a directory, use nisls −l −R to check for existing
files or subdirectories and delete them first.

� If you are trying to dissociate a replica from a domain with nisrmdir −s , and
the replica is down or otherwise out of communication with the master, you
will get this error message. In such cases, you can run nisrmdir −f −s
replicaname on the master to force the dissociation. Note, however, that if you
use nisrmdir −f −s to dissociate an out-of-communication replica, you must
run nisrmdir −f −s again as soon as the replica is back on line in order to
clean up the replica’s /var/nis file system. If you fail to rerun nisrmdir −f
−s replicaname when the replica is back in service, the old out-of-date
information left on the replica could cause problems.

This message is generated by the NIS+ error code constant: NIS_NOTEMPTY. See
the nis_tables man page for additional information.

attribute no permission

FNS error message. The caller did not have permission to perform the attempted
attribute operation.

attribute value required

FNS error message. The operation attempted to create an attribute without a
value, and the specific naming system does not allow this.

authdes_marshal: DES encryption failure

DES encryption for some authentication data failed. Possible causes:

� Corruption of a library function or argument.

� A problem with a DES encryption chip, if you are using one.

Call the Sun Solutions Center for assistance.

authdes_refresh: keyserv is unable to encrypt session key

The keyserv process was unable to encrypt the session key with the public key
that it was given. See “Keyserv Failure” on page 537 for additional information.

authdes_refresh: unable to encrypt conversation key

The keyserv process could not encrypt the session key with the public key that
was given. This usually requires some action on your part. Possible causes are:

� The keyserv process is dead or not responding. Use ps −ef to check whether
the keyserv process is running on the keyserv host. If it is not, then start it,
and then run keylogin .

Error Messages 571

� The client has not performed a keylogin . Do a keylogin for the client and
see if that corrects the problem.

� The client host does not have credentials. Run nismatch on the client’s home
domain cred table to see if the client host has the proper credentials. If it does
not, create them.

� A DES encryption failure. See the authdes_marshal: DES encryption failure
error message).

See “NIS+ Security Problems” on page 531 for additional information regarding
security key problems.

authdes_refresh: unable to synchronize clock

This indicates a synchronization failure between client and server clocks. This will
usually correct itself. However, if this message is followed by any time stamp
related error, you should manually resynchronize the clocks. If the problem
reoccurs, check that remote rpcbind is functioning correctly.

authdes_refresh: unable to synch up w/server

The client-server clock synchronization has failed. This could be caused by the
rpcbind process on the server not responding. Use ps −ef on the server to see if
rpcbind is running. If it is not, restart it. If this error message is followed by any
time stamp-related message, then you need to use rdate servername to manually
resync the client clock to the server clock.

authdes_seccreate: keyserv is unable to generate session key

This indicates that keyserv was unable to generate a random DES key for this
session. This requires some action on your part:

� Check to make sure that keyserv is running properly. If it is not, restart it
along with all other long-running processes that use Secure RPC or make NIS+
calls such as automountd , rpc.nisd and sendmail . Then do a keylogin .

� If keyserv is up and running properly, restart the process that logged this
error.

authdes_seccreate: no public key found for servername

The client side cannot get a DES credential for the server named servername. This
requires some action on your part:

� Check to make sure that servername has DES credentials. If it does not, create
them.

� Check the switch configuration file to see which name service is specified and
then make sure that service is responding. If it is not responding, restart it.

authdes_seccreate: out of memory

572 Solaris Naming Administration Guide ♦ May 1999

See “NIS+ System Resource Problems” on page 544 for information on insufficient
memory problems.

authdes_seccreate: unable to gen conversation key

The keyserv process was unable to generate a random DES key. The most likely
cause is that the keyserv process is down or otherwise not responding. Use ps
−ef to check whether the keyserv process is running on the keyserv host. If it
is not, then start it and then run keylogin .

If restarting keyserv fails to correct the problem, it may be that other processes
that use Secure RPC or make NIS+ calls are not running (for example,
automountd , rpc.nisd , or sendmail). Check to see whether these processes
are running, if they are not, restart them.

See “NIS+ Security Problems” on page 531 for additional information regarding
security key problems.

authdes_validate: DES decryption failure

See authdes_marshal: DES decryption failure on .

authdes_validate: verifier mismatch

The time stamp that the client sent to the server does not match the one received
from the server. (This is not recoverable within a Secure RPC session. Possible
causes:

� Corruption of the session key or time stamp data in the client or server cache

� The server deleted from this cache a session key for a still active session.

� Network data corruption.

Try re-executing the command.

authentication failure

FNS error message. The operation could not be completed because the principal
making the request cannot be authenticated with the name service involved. If the
service is NIS+, check that you are identified as the correct principal (run the
command nisdefaults) and that your machine has specified the correct source
for publickeys. Check that the /etc/nsswitch.conf file has the entry,
publickey: nisplus .

bad reference

FNS error message. FNS could not interpret the contents of the reference. This may
result if the contents of the reference has been corrupted or when the reference
identifies itself as an FNS reference, but FNS doesn’t know how to decode it.

CacheBind: xdr_directory_obj failed.

Error Messages 573

The most likely causes for this message are:

� Bad or incorrect parameters being passed to the xdr_directory_obj routine.
Check the syntax and accuracy of whatever command you most recently
entered.

� An attempt to allocate system memory failed. See “Insufficient Memory” on
page 544 for a discussion of memory problems.

� If your command syntax is correct, and your system does not seem to be short
of memory, contact the Sun Solutions Center.

Cache expired

The entry returned came from an object cache that has expired. This means that
the time-to-live value has gone to zero and the entry may have changed. If the
flag −NO_CACHEwas passed to the lookup function, then the lookup function will
retry the operation to get an unexpired copy of the object.

This message is generated by the NIS+ error code constant: NIS_CACHEEXPIRED.
See the nis_tables and nis_names man pages for additional information.

Callback: - select failed message nnnn

An internal system call failed. In most cases this problem will correct itself. If it
does not correct itself, make sure that rpc.nisd has not been aborted. If it has,
restart it. If the problem reoccurs frequently, contact the Sun Solutions Center.

CALLBACK_SVC: bad argument

An internal system call failed. In most cases this problem will correct itself. If it
does not correct itself, make sure that rpc.nisd has not been aborted. If it has,
restart it. If the problem reoccurs frequently, contact the Sun Solutions Center.

Cannot grow transaction log error string

The system cannot add to the log file. The reason is indicated by the string. The
most common cause of this message is lack of disk space. See “Insufficient Disk
Space” on page 544.

Cannot obtain Initial Context

FNS error message. Indicates an installation problem. See “Cannot Obtain Initial
Context” on page 561.

Cannot truncate transaction log file

An attempt has been made to checkpoint the log, and the rpc.nisd daemon is
trying to shrink the log file after deleting the checkpointed entries from the log.
See the ftruncate man pages for a description of various factors that might
cause this routine to fail. See also “NIS+ Database Problems” on page 523.

574 Solaris Naming Administration Guide ♦ May 1999

Cannot write one character to transaction log, error message

An attempt has been made by the rpc.nisd daemon to add an update from the
current transaction into the transaction log, and the attempt has failed for the
reason given in the message that has been returned by the function. Additional
information may be obtained from the write routine’s man page.

Can’t compile regular expression variable

Returned by the nisgrep command when the expression in keypat was
malformed.

Can’t get any map parameter information.

See “NIS Problems and Solutions” on page 549

Can’t find name service for passwd

Either there is no nsswitch.conf file or there is no passwd entry in the file, or
the passwd entry does not make sense or is not one of the allowed formats.

Can’t find name ’s secret key

Possible causes:

� You may have incorrectly types the password.

� There may be no entry for name in the cred table.

� NIS+ could not decrypt the key (possibly because the entry might be corrupt).

� The nsswitch.conf file may be directing the query to a local password in an
/etc/passwd file that is different than the NIS+ password recorded in the cred
table.

See “NIS+ Security Problems” on page 531 for information on diagnosing and
solving these type of problem.

*** servername.domainname can’t find machinename; Server failed.

DNS error message. See “Server Failed and Zone Expired Problems ” on page 559
and “Other DNS Syntax Errors” on page 560.

Can’t find server name for address 127.0.0.1; server failed.

DNS error message. This message usually indicates that your primary master
server is using an outdated named.ca file with invalid information. If your
network is connected to the Internet, you need to get a current named.ca file
from the authority that administers your top level domain (.com , for instance).
For .com , .edu , .gov , .mil , .org , and others, that authority is InterNIC. If your
network is not connected to the Internet, you need to check your named.ca file
for errors.

Error Messages 575

checkpoint_log: Called from read only child ignored.

This is simply a status message indicating that a read-only process attempted to
perform an operation restricted to the parent process, and the attempt was
aborted. No action need be taken.

checkpoint_log: Unable to checkpoint, log unstable.

An attempt was made to checkpoint a log that was not in a stable state. (That is,
the log was in a resync, update, or checkpoint state.) Wait until the log is stable,
and then rerun the nisping command.

check_updaters: Starting resync.

This is simply a system status message. No action need be taken.

Child process requested to checkpoint!

This message indicates a minor software problem that the system is capable of
correcting. If these messages appear often, you can change the threshold level in
your /etc/syslog.conf file. See the syslog.conf man page for details.

Column not found: columnname

The specified column does not exist in the specified table.

communication failure

FNS error message. FNS could not communicate with the name service to
complete the operation.

configuration error

An error resulted because of configuration problems. Examples:

(1) the bindings table are removed out-of-band (outside of FNS).

(2) a host is in the NIS+ hosts directory object but does not have a corresponding
FNS host context.

context not empty

FNS error message. An attempt has been made to remove a context that still
contains bindings.

continue operation using status values

FNS error message. The operation should be continued using the remaining name
and the resolved reference returned in the status.

Could not find string ’s secret key

576 Solaris Naming Administration Guide ♦ May 1999

Possible causes:

� You may have incorrectly typed the password.

� There may be no entry for name in the cred table.

� NIS+ could not decrypt the key (possibly because the entry might be corrupt)

� The nsswitch.conf file may have the wrong publickey policy. It may be
directing the query to a local public key in an /etc/publickey file that is
different from the NIS+ password recorded in the cred table.

See “NIS+ Security Problems” on page 531 for information on diagnosing and
solving these types of problem.

Could not generate netname

The Secure RPC software could not generate the Secure RPC netname for your
UID when performing a keylogin . This could be due to the following causes:

� You do not have LOCAL credentials in the NIS+ cred table of the machine’s
home domain.

� You have a local entry in /etc/passwd with a UID that is different from the
UID you have in the NIS+ passwd table.

string: could not get secret key for ’ string

Possible causes:

� You may have incorrectly typed the password.

� There may be no entry for name in the cred table.

� NIS+ could not decrypt the key (possibly because the entry might be corrupt)

� The nsswitch.conf file may have the wrong publickey policy. It may be
directing the query to a local publickey in an /etc/publickey file that is
different from the NIS+ password recorded in the cred table.

See “NIS+ Security Problems” on page 531 for information on diagnosing and
solving these type of problem.

Couldn’t fork a process!

The server could not fork a child process to satisfy a callback request. This is
probably caused by your system reaching its maximum number of processes. You
can kill some unneeded processes, or increase the number of processes your
system can handle. See “Insufficient Processes” on page 545 for additional
information.

Couldn’t parse access rights for column string

This message is usually returned by the nistbladm −u command when
something other than a + (plus sign), a - (minus sign), or an = (equal sign) is

Error Messages 577

entered as the operator. Other possible causes are failure to separate different
column rights with a comma, or the entry of something other than r,d,c , or m
for the type of permission. Check the syntax for this type of entry error. If
everything is entered correctly and you still get this error, the table might have
been corrupted.

Database for table does not exist

At attempt to look up a table has failed. See “NIS+ Object Not Found Problems”
on page 526 for possible causes.

This message is generated by the NIS+ error code constant: NIS_NOSUCHTABLE.
See the nis_tables and nis_names man pages for additional information.

_db_add: child process attempting to add/modify _db_addib:
non-parent process attempting an add

These messages indicate that a read-only or nonparent process attempted to add
or modify an object in the database. In most cases, these messages do not require
any action on your part. If these messages are repeated frequently, call the Sun
Solutions Center.

db_checkpoint: Unable to checkpoint string

This message indicates that for some reason NIS+ was unable to complete
checkpointing of a directory. The most likely cause is that the disk is full See
“Insufficient Disk Space” on page 544 for additional information).

_db_remib: non-parent process attempting an remove _db_remove:
non-parent process attempting a remove

These messages indicate that a read-only or non-parent process attempted to
remove a table entry. In most cases, these messages do not require any action on
your part. If these messages are repeated frequently, call the Sun Solutions Center.

Do you want to see more information on this command?

This indicates that there is a syntax or spelling error on your script command line.

Entry/Table type mismatch

This occurs when an attempt is made to add or modify an entry in a table, and the
entry passed is of a different type from the table. For example, if the number of
columns is not the same. Check that your update correctly matches the table type.

This message is generated by the NIS+ error code constant: NIS_TYPEMISMATCH.
See the nis_tables man page for additional information.

error

578 Solaris Naming Administration Guide ♦ May 1999

FNS error message. An error that cannot be classified as one of the other errors
listed above occurred while processing the request. Check the status of the
naming services involved in the operation and see whether any of them are
experiencing extraordinary problems.

**ERROR: chkey failed again. Please contact your network
administrator to verify your network password.

This message indicates that you typed the wrong network password.

� If this is the first time you are initializing this machine, contact your network
administrator to verify the network password.

� If this machine has been initialized before as an NIS+ client of the same domain,
try typing the root login password at the Secure RPC password prompt.

� If this machine is currently an NIS+ client and you are trying to change it to a
client of a different domain, remove the /etc/.rootkey file, and then rerun
the nisclient script, using the network password given to you by your
network administrator (or the network password generated by the
nispopulate script).

Error: Could not create a valid NIS+ coldstart file

This message is from nisinit , the NIS+ initialization routine. It is followed by
another message preceded by a string that begins: “lookup:..’’ . This second
message will explain why a valid NIS+ cold-start file could not be created.

**ERROR: could not restore file filename

This message indicates that NIS+ was unable to rename filename.no_nisplus to
filename.

Check your system console for system error messages.

� If there is a system error message, fix the problem described in the error
message and then rerun nisclient −i .

� If there aren’t any system error messages, try renaming this file manually, and
then rerun nisclient −i .

**ERROR: Couldn’t get the server NIS+_server’s address.

The script was unable to retrieve the server’s IP address for the specified domain.
Manually add the IP address for NIS+_server into the /etc/hosts file, then rerun
nisclient −i .

**ERROR: directory directory-path does not exist.

This message indicates that you typed an incorrect directory path. Type the correct
directory path.

Error Messages 579

**ERROR: domainname does not exist.

This message indicates that you are trying to replicate a domain that does not exist.

� If domainname is spelled incorrectly, rerun the script with the correct domain
name.

� If the domainname domain does not exist, create it. Then you can replicate it.

**ERROR: parent-domain does not exist.

This message indicates that the parent domain of the domain you typed on the
command line does not exist. This message should only appear when you are
setting up a nonroot master server.

� If the domain name is spelled incorrectly, rerun the script with the correct
domain name.

� If the domain’s parent domain does not exist, you have to create the parent
domain first, and then you can create this domain.

**ERROR: Don’t know about the domain ‘‘ domainname’’. Please check
your domainname.

This message indicates that you typed an unrecognized domain name. Rerun the
script with the correct domain name.

**ERROR: failed dumping tablename table.

The script was unable to populate the cred table because the script did not
succeed in dumping the named table.

� If niscat tablename .org_dir fails, make sure that all the servers are
operating, then rerun the script to populate the tablename table.

� If niscat tablename.org_dir is working, the error may have been caused by
the NIS+ server being temporarily busy. Rerun the script to populate the
tablename table.

**ERROR: host hostname is not a valid NIS+ principal in domain
domainname. This host name must be defined in the credential
table in domain domainname. Use nisclient -c to create the host
credential

A machine has to be a valid NIS+ client with proper credentials before it can
become an NIS+ server. To convert a machine to an NIS+ root replica server, the
machine first must be an NIS+ client in the root domain. Follow the instructions
on how to add a new client to a domain, then rerun nisserver −R.

Before you can convert a machine to an NIS+ nonroot master or a replica server,
the machine must be an NIS+ client in the parent domain of the domain that it
plans to serve. Follow the instructions on how to add a new client to a domain,
then rerun nisserver −Mor nisserver −R.

580 Solaris Naming Administration Guide ♦ May 1999

This problem should not occur when you are setting up a root master server.

Error in accessing NIS+ cold start file is NIS+ installed?

This message is returned if NIS+ is not installed on a machine or if for some
reason the file /var/nis/NIS_COLD_START could not be found or accessed.
Check to see if there is a /var/nis/NIS_COLD_START file. If the file exists,
make sure your path is set correctly and that NIS_COLD_STARThas the proper
permissions. Then rename or remove the old cold-start file and rerun the
nisclient script to install NIS+ on the machine.

This message is generated by the cache manager that sends the NIS+ error code
constant: NIS_COLDSTART_ERR. See the write and open man pages for
additional information on why a file might not be accessible.

Error in RPC subsystem

This fatal error indicates the RPC subsystem failed in some way. Generally, there
will be a syslog message on either the client or server side indicating why the
RPC request failed.

This message is generated by the NIS+ error code constant: NIS_RPCERROR. See
the nis_tables and nis_names man pages for additional information.

**ERROR: it failed to add the credential for root.

The NIS+ command nisaddcred failed to create the root credential when trying
to set up a root master server. Check your system console for system error
messages:

� If there is a system error message, fix the problem described in the error
message and then rerun nisserver .

� If there aren’t any system error messages, check to see whether the rpc.nisd
process is running. If it is not running, restart it and then rerun nisserver .

**ERROR: it failed to create the tables.

The NIS+ command nissetup failed to create the directories and tables. Check
your system console for system error messages:

� If there is a system error message, fix the problem described in the error
message and rerun nisserver .

� If there aren’t any system error messages, check to see whether the rpc.nisd
process is running. If it is not running, restart it and rerun nisserver .

**ERROR: it failed to initialize the root server.

The NIS+ command nisinit −r failed to initialize the root master server. Check
your system console for system error messages. If there is a system error message,
fix the problem described in the error message and rerun nisserver .

Error Messages 581

**ERROR: it failed to make the domainname directory

The NIS+ command nismkdir failed to make the new directory domainname
when running nisserver to create a nonroot master. The parent domain does
not have create permission to create this new domain.

� If you are not the owner of the domain or a group member of the parent
domain, rerun the script as the owner or as a group member of the parent
domain.

� If rpc.nisd is not running on the new master server of the domain that you
are trying to create, restart rpc.nisd .

**ERROR: it failed to promote new master for the domainname
directory

The NIS+ command nismkdir failed to promote the new master for the directory
domainname when creating a nonroot master with the nisserver script.

� If you do not have modify permission in the parent domain of this domain,
rerun the script as the owner or as a group member of the parent domain.

� If rpc.nisd is not running on the servers of the domain that you are trying to
promote, restart rpc.nisd on these servers and rerun nisserver .

**ERROR: it failed to replicate the directory-name directory

The NIS+ command nismkdir failed to create the new replica for the directory
directory-name.

� If rpc.nisd is not running on the master server of the domain that you are
trying to replicate, restart rpc.nisd on the master server, rerun nisserver .

� If rpc.nisd is not running on the new replica server, restart it on the new
replica and rerun nisserver .

**ERROR: invalid group name. It must be a group in the root-domain
domain.

This message indicates that you used an invalid group name while trying to
configure a root master server. Rerun nisserver −r with a valid group name for
root-domain.

**ERROR: invalid name ‘‘ client-name’’ It is neither an host nor an
user name.

This message indicates that you typed an invalid client-name.

� If client-name was spelled incorrectly, rerun nisclient −c with the correct
client-name.

� If client-name was spelled correctly, but it does not exist in the proper table, put
client-name into the proper table and rerun nisclient −c . For example, a user
client belongs in the passwd table, and a host client belongs in the hosts table.

582 Solaris Naming Administration Guide ♦ May 1999

**ERROR: hostname is a master server for this domain. You cannot
demote a master server to replica. If you really want to demote
this master, you should promote a replica server to master using
nisserver with the M option.

You cannot directly convert a master server to a replica server of the same
domain. You can, however, change a replica to be the new master server of a
domain by running nisserver −Mwith the replica host name as the new master.
This automatically makes the old master a replica.

**ERROR: missing hostnames or usernames.

This messages indicates that you did not type the client names on the command
line. Rerun nisclient −cwith the client names.

**ERROR: NIS+ group name must end with a ‘‘.’’

This message indicates that you did not specify a fully qualified group name
ending with a period. Rerun the script with a fully qualified group name.

**ERROR: NIS+ server is not running on remote-host. You must do the
following before becoming a NIS+ server: 1. become a NIS+ client
of the parent domain or any domain above the domain which you
plan to serve. (nisclient) 2. start the NIS+ server. (rpc.nisd)

This message indicates that rpc.nisd is not running on the remote machine that
you are trying to convert to an NIS+ server. Use the nisclient script to become
an NIS+ client of the parent domain or any domain above the domain you plan to
serve; start rpc.nisd on remote-host.

**ERROR: nisinit failed.

nisinit was unable to create the NIS_COLD_STARTfile.

Check the following:

� That the NIS+ server that you specified with the −H option is running—use
ping

� That you typed the correct domain name

� That rpc.nisd is running on the server

� That the nobody class has read permission for this domain

**ERROR: NIS map transfer failed. tablename table will not be
loaded.

NIS+ was unable to transfer the NIS map for this table to the NIS+ database.

� If the NIS server host is running, try running the script again. The error may
have been due to a temporary failure.

Error Messages 583

� If all tables have this problem, try running the script again using a different NIS
server.

**ERROR: no permission to create directory domainname

The parent domain does not have create permission to create this new domain. If
you are not the owner of the domain or as a group member of the parent domain,
rerun the script as the owner, or as a group member of the parent domain.

**ERROR: no permission to replicate directory domainname.

This message indicates that you do not have permission to replicate the domain.
Rerun the script as the owner or as a group member of the domain.

error receiving zone transfer

DNS error message. This usually indicates a syntax error in one of the primary
server’s DNS files. See “Other DNS Syntax Errors” on page 560.

**ERROR: table tablename .org_dir. domainname does not exist.’’
tablename table will not be loaded.’’

The script did not find the NIS+ table tablename.

� If tablename is spelled incorrectly, rerun the script with the correct table name.

� If the tablename table does not exist, use nissetup to create the table if
tablename is one of the standard NIS+ tables. Or use nistbladm to create the
private table tablename. Then rerun the script to populate this table.

� If the tablename table exists, the error may have been caused by the NIS+ server
being temporarily busy. Rerun the script to populate this tablename table.

**ERROR: this name ‘‘ clientname’’ is in both the passwd and hosts
tables. You cannot have an username same as the host name.

client-name appears in both the passwd and hosts tables. One name is not allowed
to be in both of these tables. Manually remove the entry from either the passwd
or hosts table. Then, rerun nisclient −c .

**ERROR: You cannot use the -u option as a root user.

This message indicates that the superuser tried to run nisclient −u. The −u
option is for initializing ordinary users only. Superusers do not need be initialized
as NIS+ clients.

**ERROR: You have specified the Z option after having selected
the X option. Please select only one of these options [list]. Do
you want to see more information on this command?

The script you are running allows you to choose only one of the listed options.

584 Solaris Naming Administration Guide ♦ May 1999

� Type y to view additional information.

� Type n to stop the script and exit.

After exiting the script, rerun it with just one of the options.

**ERROR: you must specify a fully qualified groupname.

This message indicates that you did not specify a fully qualified group name
ending with a period. Rerun the script with a fully qualified group name.

**ERROR: you must specify both the NIS domainname (-y) and the
NIS server host name (-h).

This message indicates that you did not type either the NIS domain name and/or
the NIS server host name. Type the NIS domain name and the NIS server host
name at the prompt or on the command line.

**ERROR: you must specify one of these options: -c, -i, -u, -r.

This message indicates that one of these options, −c , −i , −u, −r was missing from
the command line. Rerun the script with the correct option.

**ERROR: you must specify one of these options: -r, -M or -R’’

This message indicates that you did not type any of the −r or the −Mor the −R
options. Rerun the script with the correct option.

**ERROR: you must specify one of these options: -C, -F, or -Y

This message indicates that you did not type either the −Y or the −F option. Rerun
the script with the correct option.

**ERROR: You must be root to use -i option.

This message indicates that an ordinary user tried to run nisclient −i . Only the
superuser has permission to run nisclient −i .

Error while talking to callback proc

An RPC error occurred on the server while it was calling back to the client. The
transaction was aborted at that time and any unsent data was discarded. Check
the syslog on the server for more information.

This message is generated by the NIS+ error code constant: NIS_CBERROR. See
the nis_tables man page for additional information.

First/Next chain broken

This message indicates that the connection between the client and server broke
while a callback routine was posting results. This could happen if the server died
in the middle of the process.

Error Messages 585

This message is generated by the NIS+ error code constant: NIS_CHAINBROKEN.

getzone: print_update failed

DNS error message. This usually indicates a syntax error in one of the primary
server’s DNS files. See “Other DNS Syntax Errors” on page 560.

Generic system error

Some form of generic system error occurred while attempting the request. Check
the syslog record on your system for error messages from the server.

This message usually indicates that the server has crashed or the database has
become corrupted. This message may also be generated if you incorrectly specify
the name of a server or replica as if it belonged to the domain it was servicing
rather than the domain above. See “Domain Name Confusion ” on page 521 for
additional information.

This message is generated by the NIS+ error code constant: NIS_SYSTEMERROR.
See the nis_tables and nis_names man pages for additional information.

illegal name

FNS error message. The name supplied is not a legal name.

Illegal object type for operation

See “Illegal Object Problems” on page 519 for a description of these type of
problems.

This message is generated by the NIS+ error code constant: DB_BADOBJECT.

incompatible code sets

FNS error message. The operation involved character strings from incompatible
code sets, or the supplied code set is not supported by the implementation.

in.named [nnnn]: lame server on hostname

DNS error message. Lame delegation is when an NS record in the hosts file of a
parent domain server identifies another server as authoritative for a subdomain
zone, but that server is not authoritative for that zone. The NS records in the
parent’s hosts file must be a superset that includes all the authoritative servers in
all delegated sub zones.

insufficient permission to update credentials.

This message is generated by the nisaddcred command when you have
insufficient permission to execute an operation. This could be insufficient
permission at the table, column, or entry level. Use niscat -o cred.org_dir
to determine what permissions you have for that cred table. If you need

586 Solaris Naming Administration Guide ♦ May 1999

additional permission, you or the system administrator can change the permission
requirements of the object as described in Chapter 10, or add you to a group that
does have the required permissions as described in Chapter 12.

See “NIS+ Ownership and Permission Problems” on page 529 for additional
information about permission problems.

insufficient resources

FNS error message. The name service used by FNS does not have sufficient
resources to complete the request. Check memory and disk availability on the
name servers involved.

invalid attribute identifier

FNS error message. The attribute identifier is in a format not acceptable to the
naming system, or its contents are not valid for the format specified for the
identifier.

invalid attribute value

FNS error message. The value supplied is not in the correct form for the given
attribute.

invalid enumeration handle

FNS error message. The enumeration handle supplied is invalid. The handle could
have been from another enumeration, an update operation may have occurred
during the enumeration, or there may have been some other reason.

Invalid Object for operation

� Name context. The name passed to the function is not a legal NIS+ name.

� Table context. The object pointed to is not a valid NIS+ entry object for the given
table. This could occur if it had a mismatched number of columns, or a different
data type (for example, binary or text) than the associated column in the table.

This message is generated by the NIS+ error code constant: NIS_INVALIDOBJ .
See the nis_tables and nis_names man pages for additional information.

invalid syntax attributes

FNS error message. The syntax attributes supplied are invalid or insufficient to
fully specify the syntax.

invalid usecs Routine_name: invalid usecs

This message is generated when the value in the tv_usecs field of a variable of
type struct time stamp is larger than the number of microseconds in a
second. This is usually due to some type of software error.

Error Messages 587

tablename is not a table

The object with the name tablename is not a table object. For example, the
nisgrep and nismatch commands will return this error if the object you specify
on the command line is not a table.

link error

FNS error message. An error occurred while resolving an XFN link with the
supplied name.

link loop limit reached

FNS error message. A nonterminating loop was detected due to XFN links
encountered during composite name resolution, or the implementation-defined
limit was exceeded on the number of XFN links allowed for a single operation.

Link Points to illegal name

The passed name resolved to a LINK type object and the contents of the object
pointed to an invalid name.

You cannot link table entries. A link at the entry level may produce this error
message.

This message is generated by the NIS+ error code constant: NIS_LINKNAMEERROR.
See the nis_tables and nis_names man pages for additional information.

Load limit of number reached!

An attempt has been made to create a child process when the maximum number
of child processes have already been created on this server. This message is seen
on the server’s system log, but only if the threshold for logging messages has been
set to include LOG_WARNINGlevel messages.

login and keylogin passwords differ.

This message is displayed when you are changing your password with
nispasswd and the system has changed your password, but has been unable to
update your credential entry in the cred table with the new password and also
unable to restore your original password in the passwd table. This message is
followed by the instructions:

Use NEW password for login and OLD password for
keylogin. Use ‘‘chkey -p’’ to reencrypt the credentials with
the new login password. You must keylogin explicitly after
your next login.

588 Solaris Naming Administration Guide ♦ May 1999

These instructions are then followed by a status message explaining why it was
not possible to revert back to the old password. If you see these messages, be sure
to follow the instructions as given.

Login incorrect

The most common cause of a “login incorrect” message is mistyping the
password. Try it again. Make sure you know the correct password. Remember that
passwords are case-sensitive (uppercase letters are considered different than
lowercase letters) and that the letter “o” is not interchangeable with the numeral
“0,” nor is the letter “l” the same as the numeral “1,”

For other possible causes of this message, see “Login Incorrect Message ” on
page 532.

log_resync: Cannot truncate transaction log file

An attempt has been made to checkpoint the log, and the rpc.nisd daemon is
trying to shrink the log file after deleting the checkpointed entries from the log.
See the ftruncate man pages for a description of various factors that might
cause this routine to fail. See also “NIS+ Database Problems” on page 523.

malformed link

FNS error message. A malformed link reference was found during a
fn_ctx_lookup_link() operation. The name supplied resolved to a reference
that was not a link.

Malformed Name or illegal name

The name passed to the function is not a legal or valid NIS+ name.

One possible cause for this message that someone changed an existing domain
name. Existing domain names should not be changed. See “Changed Domain
Name” on page 538.

This message is generated by the NIS+ error code constant: NIS_BADNAME. See
the nis_tables man page for additional information.

_map_addr: RPC timed out.

A process or application could not contact NIS+ within its default time limit to get
necessary data or resolve host names from NIS+. In most cases, this problem will
solve itself after a short wait. See “NIS+ Performance and System Hang Problems”
on page 540 for additional information about slow performance problems.

Master server busy full dump rescheduled

This message indicates that a replica server has been unable to update itself with
a full dump from the master server because the master is busy. See “Replica
Update Failure” on page 547 for additional information.

Error Messages 589

String Missing or malformed attribute

The name of an attribute did not match with a named column in the table, or the
attribute did not have an associated value.

This could indicate an error in the syntax of a command. The string should give
an indication of what is wrong. Common causes are spelling errors, failure to
correctly place the equals sign (=), an incorrect column or table name, and so forth.

This message is generated by the NIS+ error code constant: NIS_BADATTRIBUTE.
See the nis_tables man page for additional information.

Modification failed

Returned by the nisgrpadm command when someone else modified the group
during the execution of your command. Check to see who else is working with
this group. Reissue the command.

This message is generated by the NIS+ error code constant: NIS_IBMODERROR.

Modify operation failed

The attempted modification failed for some reason.

This message is generated by the NIS+ error code constant: NIS_MODFAIL. See
the nis_tables and nis_names man pages for additional information.

servername named [nnnn]: directory directoryname: No such file or
directory.

DNS error message. This usually indicates a syntax or spelling error in a DNS
boot or data file.

servername named [nnnn]: /etc/named.boot: line n unknown field
‘ name’

DNS error message. This often indicates a spelling error in the DNS named.boot
file. For example, “primary” or “secondary” might be misspelled.

servername named [nnnn]: servername has CNAME and other data
(illegal)

DNS error message. This often indicates a syntax error in, or misuse of, a CNAME
record for machine servername.

servername named [nnnn]: domainname Line n: Database format error
(n.n.n.n.n)

DNS error message. The resource record for the machine in domain name1, whose
IP address is n.n.n.n may be missing the type (usually IN) or have some other
syntax error.

590 Solaris Naming Administration Guide ♦ May 1999

servername named [nnnn]: Line n Unknown type: n.n.n.n.

DNS error message. The DNS hosts file resource record for the machine whose IP
address is n.n.n.n does not include the type (usually IN).

servername named [nnnn]: secondary zone zonename expired.

DNS error message. See “Server Failed and Zone Expired Problems ” on page 559.

servername named [nnnn]: zoneref: Masters for secondary zone
zonename unreachable

DNS error message. See“Server Failed and Zone Expired Problems ” on page 559.

name in use

FNS error message. The name supplied is already bound in the context.

name not found

FNS error message. The name supplied was not found.

Name not served by this server

A request was made to a server that does not serve the specified name. Normally
this will not occur; however, if you are not using the built-in location mechanism
for servers, you may see this if your mechanism is broken.

Other possible causes are:

� Cold-start file corruption. Delete the /var/nis/NIS_COLD_START file and
then reboot.

� Cache problem such as the local cache being out of date. Kill the
nis_cachemgr and /var/nis/NIS_SHARED_DIRCACHE , and then reboot. (If
the problem is not in the root directory, you may be able to simply kill the
domain cache manager and try the command again.)

� Someone removed the directory from a replica.

This message is generated by the NIS+ error code constant: NIS_NOT_ME. See the
nis_tables and nis_names man pages for additional information.

Named object is not searchable

The table name resolved to an NIS+ object that was not searchable.

This message is generated by the NIS+ error code constant:
NIS_NOTSEARCHABLE. See the nis_tables man page for additional information.

Name/entry isn’t unique

An operation has been requested based on a specific search criteria that returns
more than one entry. For example, you use nistbladm −r to delete a user from

Error Messages 591

the passwd table, and there are two entries in that table for that user name as
shown as follows:

mymachine# nistbladm -r [name=arnold],passwd.org_dir Can’t
remove entry: Name/entry isn’t unique

You can apply your command to multiple entries by using the −R option rather
than −r . For example, to remove all entries for arnold :

mymachine# nistbladm -R name=arnold],passwd.org_dir

NIS make terminated

A problem caused your NIS make operation to terminate before successful
conclusion. Check your NIS make file for problems and syntax errors.

NIS: server not responding for domain domainname. Still trying

See “NIS Problems and Solutions” on page 549.

NIS+ error

The NIS+ server has returned an error, but the passwd command determines
exactly what the error is.

NisDirCacheEntry:write: xdr_directory_obj failed

The most likely causes for this message is that an attempt to allocate system
memory failed. See “Insufficient Memory” on page 544 for a discussion of
memory problems. If your system does not seem to be short of memory, contact
the Sun Solutions Center.

NIS+ operation failed

This generic error message should be rarely seen. Usually it indicates a minor
software problem that the system can correct on it own. If it appears frequently, or
appears to be indicating a problem that the system is not successfully dealing
with, contact the Sun Solutions Center.

This message is generated by the NIS+ error code constant: NIS_FAIL .

string: NIS+ server busy try again later.

See “NIS+ Performance and System Hang Problems” on page 540 for possible
causes.

NIS+ server busy try again later.

Self explanatory. Try the command later.

592 Solaris Naming Administration Guide ♦ May 1999

See also “NIS+ Performance and System Hang Problems” on page 540 for possible
causes.

NIS+ server for string not responding still trying

See “NIS+ Performance and System Hang Problems” on page 540 for possible
causes.

NIS+ server not responding

See “NIS+ Performance and System Hang Problems” on page 540 for possible
causes.

NIS+ server needs to be checkpointed. Use nisping -C domainname

Caution - Checkpoint immediately! Do not wait!

This message is generated at the LOG_CRIT level on the server’s system log. It
indicates that the log is becoming too large. Use nisping −C domainname to
truncate the log by checkpointing.

See also “ Logs Grow too Large” on page 521 for additional information on log
size.

NIS+ servers unreachable

This soft error indicates that a server for the desired directory of the named table
object could not be reached. This can occur when there is a network failure or the
server has crashed. A new attempt may succeed. See the description of the
−HARD_LOOKUPflag in the nis_tables and nis_names man pages.

This message is generated by the NIS+ error code constant:
NIS_NaMEUNREACHABLE.

NIS+ service is unavailable or not installed

Self-explanatory. This message is generated by the NIS+ error code constant:
NIS_UNAVAIL .

NIS+: write ColdStart File: xdr_directory_obj failed

The most likely causes for this message are:

� Bad or incorrect parameters. Check the syntax and accuracy of whatever
command you most recently entered.

� An attempt to allocate system memory failed. See “Insufficient Memory” on
page 544 for a discussion of memory problems.

� If your command syntax is correct, and your system does not seem to be short
of memory, contact the Sun Solutions Center.

Error Messages 593

nis_checkpoint_svc: readonly child instructed to checkpoint
ignored.

This is simply a status message indicating that a read-only process attempted to
perform an operation restricted to the parent process, and the attempt was
aborted. No action need be taken.

nis_dumplog_svc: readonly child called to dump log, ignore

This is simply a status message indicating that a read-only process attempted to
perform an operation restricted to the parent process, and the attempt was
aborted. No action need be taken.

nis_dump_svc: load limit reached.

The maximum number of child processes permitted on your system has been
reached.

nis_dump_svc: one replica is already resyncing.

Only one replica can resync from a master at a time. Try the command later.

See “Replica Update Failure” on page 547 for information on these three error
messages.

nis_dump_svc: Unable to fork a process.

The fork system call has failed. See the fork man page for possible causes.

nis_mkdir_svc: readonly child called to mkdir, ignored

This is simply a status message indicating that a read-only process attempted to
perform an operation restricted to the parent process, and the attempt was
aborted. No action need be taken.

nis_ping_svc: readonly child was pung ignored.

This is simply a status message indicating that a read-only process attempted to
perform an operation restricted to the parent process, and the attempt was
aborted. No action need be taken.

nis_rmdir_svc: readonly child called to rmdir, ignored

This is simply a status message indicating that a read-only process attempted to
perform an operation restricted to the parent process, and the attempt was
aborted. No action need be taken.

nisaddcred: no password entry for uid userid nisaddcred: unable
to create credential.

594 Solaris Naming Administration Guide ♦ May 1999

These two messages are generated during execution of the nispopulate script.
The NIS+ command nisaddcred failed to add a LOCAL credential for the user
ID userid on a remote domain. (This only happens when you are trying to
populate the passwd table in a remote domain.)

To correct the problem, add a table path in the local passwd table:

nistbladm -u -p passwd.org_dir. remote-domain passwd.org_dir

The remote-domain must be the same domain that you specified with the −d option
when you ran nispopulate . Rerun the script to populate the passwd table.

No file space on server

Self-explanatory.

This message is generated by the NIS+ error code constant: NIS_NOFILESPACE.

No match

This is most likely an error message from the shell, caused by failure to escape the
brackets when specifying an indexed name. For example, failing to set off a
bracketed indexed name with quote marks would generate this message because
the shell would fail to interpret the brackets as shown as follows:

nistbladm -m shell=/bin/csh [name=miyoko],passwd.org_dir No match

The correct syntax is:

nistbladm -m shell=/bin/csh ‘[name=miyoko],passwd.org_dir‘

No memory

Your system does not have enough memory to perform the specified operation.
See “NIS+ System Resource Problems” on page 544 for additional information on
memory problems.

Non NIS+ namespace encountered

The name could not be completely resolved. This usually indicates that the name
passed to the function resolves to a namespace that is outside the NIS+ name tree.
In other words, the name is contained in an unknown directory. When this occurs,
this error is returned with an NIS+ object of type DIRECTORY.

This message is generated by the NIS+ error code constant: NIS_FOREIGNNS. See
the nis_tables or nis_names man pages for additional information.

No password entry for uid userid No password entry found for uid
userid

Error Messages 595

Both of these two messages indicate that no entry for this user was found in the
passwd table when trying to create or add a credential for that user. (Before you
can create or add a credential, the user must be listed in the passwd table.)

� The most likely cause is misspelling the user’s userid on the command line.
Check your command line for correct syntax and spelling.

� Check that you are either in the correct domain, or specifying the correct
domain on the command line.

� If the command line is correct, check the passwd table to make sure the user is
listed under the userid you are entering. This can be done with nismatch :

mymachine# nismatch uid=userid passwd.org_dir.

If the user is not listed in the passwd table, use nistbladm or nisaddent to add
the user to the passwd table before creating the credential.

no permission

FNS error message. The operation failed because of access control problems. See
““No Permission” Messages (FNS)” on page 562. See also “No Permission” on
page 529.

No shadow password information

This means that password aging cannot be enforced because the information used
to control aging is missing.

no such attribute

FNS error message. The object did not have an attribute with the given identifier.

no supported address

FNS error message. No shared library could be found under the /usr/lib/fn
directory for any of the address types found in the reference bound to the FNS
name. Shared libraries for an address type are named according to this
convention: fn_ctx_ address_type.so . Typically there is a link from
fn_ctx_ address_type.so to fn_ctx_ address_type.so.1.

For example, a reference with address type onc_fn_nisplus would have a
shared library in the path name: /usr/lib/fn/fn_ctx_onc_fn_nisplus.so.

not a context

FNS error message. The reference does not correspond to a valid context.

Not found String Not found

Names context. The named object does not exist in the namespace.

596 Solaris Naming Administration Guide ♦ May 1999

Table context. No entries in the table matched the search criteria. If the search
criteria was null (return all entries), then this result means that the table is empty
and may safely be removed.

If the −FOLLOW_PATHflag was set, this error indicates that none of the tables in
the path contain entries that match the search criteria.

This message is generated by the NIS+ error code constant: NIS_NOTFOUND. See
the nis_tables and nis_names man pages for additional information.

See also “NIS+ Object Not Found Problems” on page 526 for general information
on this type of problem.

Not Found no such name

This hard error indicates that the named directory of the table object does not
exist. This could occur when the server that should be the parent of the server
that serves the table, does not know about the directory in which the table resides.

This message is generated by the NIS+ error code constant: NIS_NOSUCHNAME.
See the nis_names and nis_names man pages for additional information.

See also “NIS+ Object Not Found Problems” on page 526 for general information
on this type of problem.

Not master server for this domain

This message may mean that an attempt was made to directly update the
database on a replica server.

This message may also mean that a change request was made to a server that
serves the name, but it is not the master server. This can occur when a directory
object changes and it specifies a new master server. Clients that have cached
copies of that directory object in their /var/nis/NIS_SHARED_DIRCACHE file
should run ps to obtain the process ID of the nis_cachemgr , kill the
nis_cachemgr process, remove the /var/nis/NIS_SHARED_DICACHE file, and
then restart nis_cachemgr .

This message is generated by the NIS+ error code constant: NIS_NOTMASTER. See
the nis_tables and nis_names man pages for additional information.

Not owner

The operation you attempted can only be performed by the object’s owner, and
you are not the owner.

This message is generated by the NIS+ error code constant: NIS_NOTOWNER.

operation not supported

FNS error message. The operation is not supported by the context. For example,
trying to destroy an organization is not supported.

Error Messages 597

Object with same name exists

An attempt was made to add a name that already exists. To add the name, first
remove the existing name and then add the new name or modify the existing
named object.

This message is generated by the NIS+ error code constant: NIS_NAMEEXISTS.
See the nis_tables and nis_names man pages for additional information.

parse error: string (key variable)

This message is displayed by the nisaddent command when it attempts to use
database files from a /etc directory and there is an error in one of the file’s
entries. The first variable should describe the problem, and the variable after key
should identify the particular entry at fault. If the problem is with the
/etc/passwd file, you can use /usr/sbin/pwck to check it.

partial result returned

FNS error message. The operation returned a partial result.

Partial Success

This result is similar to NIS_NOTFOUND, except that it means the request
succeeded but resolved to zero entries.

When this occurs, the server returns a copy of the table object instead of an entry
so that the client may then process the path or implement some other local policy.

This message is generated by the NIS+ error code constant: NIS_PARTIAL . See
the nis_tables man page for additional information.

Passed object is not the same object on server

An attempt to remove an object from the namespace was aborted because the
object that would have been removed was not the same object that was passed in
the request.

This message is generated by the NIS+ error code constant: NIS_NOTSAMEOBJ.
See the nis_tables and nis_names man pages for additional information.

Password does not decrypt secret key for name

Possible causes:

� You may have incorrectly typed the password.

� There may be no entry for name in the cred table.

� NIS+ could not decrypt the key (possibly because the entry might be corrupt).

� The Secure RPC password does not match the login password.

598 Solaris Naming Administration Guide ♦ May 1999

� The nsswitch.conf file may be directing the query to a local password in an
/etc/passwd file that is different from the NIS+ password recorded in the
cred table. (Note that the actual encrypted passwords are stored locally in the
/etc/shadow file.)

See “NIS+ Security Problems” on page 531 for information on diagnosing and
solving these type of problem.

Password has not aged enough

This message indicates that your password has not been in use long enough and
that you cannot change it until it has been in use for N (a number of) days. See
“Changing Your Password” on page 156 for further information.

Permission denied

Returned when you do not have the permissions required to perform the
operation you attempted. See “NIS+ Ownership and Permission Problems” on
page 529 for additional information.

This message might be related to a login or password matter, or an NIS+ security
problem. The most common cause of a Permission denied message is that the
password of the user receiving it has been locked by an administrator or the
user’s account has been terminated. See Chapter 11and the “NIS+ Security
Problems” on page 531section of the Appendix A appendix.

Permissions on the password database may be too restrictive

You do not have authorization to read (or otherwise use) the contents of the
passwd field in an NIS+ table. See Chapter 10, for information on NIS+ access
rights.

Please notify your System Administrator

When displayed as a result of an attempt to update password information with
the passwd command, this message indicates that the attempt failed for one of
many reasons. For example, the service might not be available, a necessary server
is down, there is a “permission denied” type problem, and so forth. See “NIS+
Security Problems” on page 531 for a discussion of various types of security
problems.

Please check your /etc/nsswitch.conf file

The nsswitch.conf file specifies a configuration that is not supported for
passwd update. See “nsswitch.conf File Requirements ” on page 159 for
supported configurations.

Probable success

Name context. The request was successful; however, the object returned came from
an object cache and not directly from the server. (If you do not wish to see objects

Error Messages 599

from object caches, you must specify the flag −NO_CACHEwhen you call the
lookup function.)

Table context. Even though the request was successful, a table in the search path
was not able to be searched, so the result may not be the same as the one you
would have received if that table had been accessible.

This message is generated by the NIS+ error code constant: NIS_S_SUCCESS. See
the nis_tables and nis_names man pages for additional information.

Probably not found

The named entry does not exist in the table; however, not all tables in the path
could be searched, so the entry may exist in one of those tables.

This message is generated by the NIS+ error code constant: NIS_S_NOTFOUND.
See the nis_tables man page for additional information.

Query illegal for named table

A problem was detected in the request structure passed to the client library.

This message is generated by the NIS+ error code constant: NIS_BADREQUEST.
See the nis_tables man page for additional information.

Reason: can’t communicate with ypbind.

See “NIS Problems and Solutions” on page 549

replica_update: Child process attempting update, aborted

This is simply a status message indicating that a read-only process attempted an
update and the attempt was aborted.

replica_update: error result was string

This message indicates a problem (identified by string) in carrying out a dump to
a replica. See “Replica Update Failure” on page 547 for further information.

replica_update: error result was Master server busy, full dump
rescheduled replica_update: master server busy rescheduling the
resync. replica_update: master server is busy will try later.
replica_update: nis dump result Master server busy, full dump
rescheduled

These messages all indicate that the server is busy and the dump will be done
later.

replica_update: nis dump result nis_perror errorstring

This message indicates a problem (identified by the error string) in carrying out a
dump to a replica. See “Replica Update Failure” on page 547 for further
information.

600 Solaris Naming Administration Guide ♦ May 1999

replica_update: nnnn updates nnnn errors

A status message indicating a successful update.

replica_update: WARNING: last_update (directoryname) returned 0!

A NIS+ process could not find the last update time stamp in the transaction log
for that directory. This will cause the system to perform a full resync of the
problem directory.

Results Sent to callback proc

This is simply a status message. No action need be taken.

This message is generated by the NIS+ error code constant: NIS_CBRESULTS. See
the nis_tables man page for additional information.

root_replica_update: update failed string: could not fetch object
from master.

This message indicates a problem in carrying out a dump to a replica. See
“Replica Update Failure” on page 547 for further information.

RPC failure: ‘‘RPC failure on yp operation.

This message is returned by ypcat when a NIS client’s nsswitch.conf file is set
to files rather than nis , and the server is not included in the /etc/hosts file

Security exception on local system. UNABLE TO MAKE REQUEST.

This message may be displayed if a user has the same login ID as a machine name.
See “User Login Same as Machine Name” on page 530 for additional information.

date: hostname: sendmail (nnnn) : gethostbyaddr failed

One common cause of this problem is entering IP addresses in NIS+, NIS, files, or
DNS data sets with leading zeros. For example, you should never enter an IP
address as 151.029.066.001 . The correct way to enter that address is:
151.29.66.1 .

Server busy, try again

The server was too busy to handle your request.

� For the add, remove, and modify operations, this message is returned when
either the master server for a directory is unavailable or it is in the process of
checkpointing its database.

� This message can also be returned when the server is updating its internal state.

� In the case of nis_list , if the client specifies a callback and the server does
not have enough resources to handle the callback.

Error Messages 601

Retry the command at a later time when the server is available.

This message is generated by the NIS+ error code constant: NIS_TRYAGAIN. See
the nis_tables and nis_names man pages for additional information.

Server out of memory

In most cases this message indicates a fatal result. It means that the server ran out
of heap space.

This message is generated by the NIS+ error code constant: NIS_NOMEMORY. See
the nis_tables and nis_names man pages for additional information.

Sorry

This message is displayed when a user is denied permission to login or change a
password, and for security reasons the system does not display the reason for that
denial because such information could be used by an unauthorized person to gain
illegitimate access to the system.

Sorry: less than nn days since the last change

This message indicates that your password has not been in use long enough and
that you cannot change it until it has been in use for N days. See “Changing Your
Password” on page 156 for further information.

Success

(1) The request was successful. This message is generated by the NIS+ error code
constant: NIS_SUCCESS. See the nis_tables man page for additional
information.

(2) FNS error message. Operation succeeded.

_svcauth_des: bad nickname

The nickname received from the client is invalid or corrupted, possibly due to
network congestion. The severity of this message depends on what level of
security you are running. At a low security level, this message is informational
only; at a higher level, you may have to try the command again later.

_svcauth_des: corrupted window from principalname

The window that was sent does not match the one sent in the verifier.

The severity of this message depends on what level of security you are running.
At a low security level, this message is primarily for your information; at a higher
level you may have to try the command again at some later time or take
corrective action as described below.

Possible causes:

602 Solaris Naming Administration Guide ♦ May 1999

� The server’s key pair has been changed. The client used the server’s old public
key while the server has a new secret key cached with keyserv . Run
keylogin on both client and server.

� The client’s key pair has been changed and the client has not run keylogin on
the client system, so system is still sending the client’s old secret key to the
server, which is now using the client’s new public key. Naturally, the two do
not match. Run keylogin again on both client and server.

� Network corruption of data. Try the command again. If that does not work, use
the snoop command to investigate and correct any network problems. Then
run keylogin again on both server and client.

_svcauth_des: decryption failure

DES decryption for some authentication data failed. Possible causes:

� Corruption to a library function or argument.

� A problem with a DES encryption chip, if you are using one.

The severity of this message depends on what level of security you are running.
At a low security level, this message is primarily for your information; at a higher
level, you may have to call the Sun Solutions Center for assistance. If the problem
appears to be related to a DES encryption chip, call the Sun Solutions Center.

_svcauth_des: corrupted window from principalname

The window that was sent does not match the one sent in the verifier.

The severity of this message depends on what level of security you are running.
At a low security level, this message is primarily for your information; at a higher
level you may have to try the command again at some later time or take
corrective action as described below.

Possible causes:

� The server’s key pair has been changed. The client used the server’s old public
key while the server has a new secret key cached with keyserv . Run
keylogin on both client and server.

� The client’s key pair has been changed and the client has not run keylogin on
the client system, so system is still sending the client’s old secret key to the
server, which is now using the client’s new public key. Naturally, the two do
not match. Run keylogin again on both client and server.

� Network corruption of data. Try the command again. If that does not work, use
the snoop command to investigate and correct any network problems. Then
run keylogin again on both server and client.

_svcauth_des: decryption failure for principalname

DES decryption for some authentication data failed. Possible causes:

Error Messages 603

� Corruption to a library function or argument.

� A problem with a DES encryption chip, if you are using one.

The severity of this message depends on what level of security you are running.
At a low security level, this message is primarily for your information; at a higher
level, you may have to call the Sun Solutions Center for assistance. If the problem
appears to be related to a DES encryption chip, call the Sun Solutions Center.

_svcauth_des: invalid timestamp received from principalname

The time stamp received from the client is corrupted, or the server is trying to
decrypt it using the wrong key. Possible causes:

� Congested network. Retry the command.

� Server cached out the entry for this client. Check the network load.

_svcauth_des: key_decryptsessionkey failed for principalname

The keyserv process failed to decrypt the session key with the given public key.
Possible causes are:

� The keyserv process is dead or not responding. Use ps −ef to check if the
keyserv process is running on the keyserv host. If it is not, then restart it
and run keylogin .

� The server principal has not keylogged in. Run keylogin for the server
principal.

� The server principal (host) does not have credentials. Run nismatch
hostname. domainname. cred.org_dir on the client’s home domain cred table.
Create new credentials if necessary.

� keyserv may have been restarted, in which case certain long-running
applications, such as rpc.nisd , sendmail , and automountd , also need to be
restarted.

� DES encryption failure. Call the Sun Solutions Center.

_svcauth_des: no public key for principalname

The server cannot get the client’s public key. Possible causes are:

� The principal has no public key. Run nismatch on the cred table of the
principal’s home domain. If there is no DES credential in that table for the
principal, use nisaddcred to create one, and then run keylogin for that
principal.

� The name service specified by a nsswitch.conf file is not responding.

_svcauth_des: replayed credential from principalname

604 Solaris Naming Administration Guide ♦ May 1999

The server has received a request and finds an entry in its cache for the same
client name and conversation key with the time stamp of the incoming request
before that of the one currently stored in the cache.

The severity of this message depends on what level of security you are running.
At a low security level, this message is primarily for your information. At a higher
level, you may have to take corrective action as described below.

Possible causes are:

� The client and server clocks are out of sync. Use rdate to resync the client
clock to the server clock.

� The server is receiving requests in random order. This could occur if you are
using multithreading applications. If your applications support TCP, then set
/etc/netconfig (or your NETPATHenvironment variable) to tcp .

_svcauth_des: timestamp is earlier than the one previously seen
from principalname

The time stamp received from the client on a subsequent call is earlier than one
seen previously from that client. The severity of this message depends on what
level of security you are running. At a low security level, this message is
primarily for your information; at a higher level, you may have some corrective
action as described below.

Possible causes are:

� The client and server clocks are out of sync. Use rdate to resynch the client
clock to the server clock.

� The server cached out the entry for this client. The server maintains a cache of
information regarding the current clients. This cache size equals 64 client
handles.

_svcauth_des: timestamp expired for principalname

The time stamp received from the client is not within the default 35-second
window in which it must be received. The severity of this message depends on
what level of security you are running. At a low security level, this message is
primarily for your information; at a higher level, you may have to take corrective
action as described below.

Possible causes are:

� The 35-second window is too small to account for slow servers or a slow
network.

� The client and server clocks are so far out of sync that the window cannot allow
for the difference. Use rdate to resynchronize the client clock to the server
clock.

� The server has cached out the client entry. Retry the operation.

Error Messages 605

syntax not supported

FNS error message. The syntax type is not supported.

Too Many Attributes

The search criteria passed to the server had more attributes than the table had
searchable columns.

This message is generated by the NIS+ error code constant: NIS_TOOMANYATTRS.
See the nis_tables man page for additional information.

too many attribute values

FNS error message. The operation attempted to associate more values with an
attribute than the naming system supports.

Too many failures - try later

Too many tries; try again later

These messages refer to logging in or changing your password. They indicate that
you have had too many failed attempts (or taken too long) to either log in or
change your password. See “The Login incorrect Message” on page 154 or
“Password Change Failures” on page 157 for further information.

Unable to authenticate NIS+ client

This message is generated when a server attempts to execute the callback
procedure of a client and gets a status of RPC_AUTHERRfrom the RPC
clnt_call() . This is usually caused by out-of-date authentication information.
Out-of-date authentication information can occur when the system is using data
from a cache that has not been updated, or when there has been a recent change
in the authentication information that has not yet been propagated to this server.
In most cases, this problem should correct itself in a short period of time.

If this problem does not self-correct, it may indicate one of the following problems:

� Corrupted /var/nis/NIS_SHARED_DIRCACHE file. Kill the cache manager,
remove this file, and restart the cache manager.

� Corrupted /var/nis/NIS_COLD_START file. Remove the file and then run
nisinit to recreate it.

� Corrupted /etc/.rootkey file. Run keylogin −r .

This message is generated by the NIS+ error code constant: NIS_CLNTAUTH.

Unable to authenticate NIS+ server

In most cases, this is a minor software error from which your system should
quickly recover without difficulty. It is generated when the server gets a status of
RPC_AUTHERRfrom the RPC clnt_call .

606 Solaris Naming Administration Guide ♦ May 1999

If this problem does not quickly clear itself, it may indicate a corrupted
/var/nis/NIS_COLD_START , /var/nis/NIS_SHARED_DIRCACHE , or
/etc/.rootkey file.

This message is generated by the NIS+ error code constant: NIS_SRVAUTH.

Unable to bind to master server for name ’ string’

See “NIS+ Object Not Found Problems” on page 526 for information on this type
of problem. This particular message may be caused by adding a trailing dot to the
server’s domain name in the /etc/defaultdomain file.

Unable to create callback.

The server was unable to contact the callback service on your machine. This
results in no data being returned.

See the nis_tables man page for additional information.

Unable to create process on server

This error is generated if the NIS+ service routine receives a request for a
procedure number which it does not support.

This message is generated by the NIS+ error code constant: NIS_NOPROC.

string: Unable to decrypt secret key for string.

Possible causes:

� You may have incorrectly typed the password.

� There may be no entry for name in the cred table.

� NIS+ could not decrypt the key because the entry might be corrupt.

� The nsswitch.conf file may be directing the query to a local password in an
/etc/passwd file that is different than the NIS+ password recorded in the cred
table.

See “NIS+ Security Problems” on page 531 for information on diagnosing and
solving these type of problem.

unavailable

FNS error message. The name service on which the operation depends is
unavailable.

Unknown error

This is displayed when the NIS+ error handling routine receives an error of an
unknown type.

Unknown object

Error Messages 607

The object returned is of an unknown type.

This message is generated by the NIS+ error code constant: NIS_UNKNOWNOBJ.
See the nis_names man page for additional information.

update_directory: nnnn objects still running.

This is a status message displayed on the server during the update of a directory
during a replica update. You do not need to take any action.

User principalname needs Secure RPC credentials to login but has
none.

The user has failed to perform a keylogin. This problem usually arises when the
user has different passwords in /etc/shadow and a remote NIS+ passwd table.

Warning: couldn’t reencrypt secret key for principalname

The most likely cause of this problem is that your Secure RPC password is
different from your login password (or you have one password on file in a local
/etc/shadow file and a different one in a remote NIS+ table) and you have not
yet done an explicit keylogin . See “NIS+ and Login Passwords in /etc/passwd
File” on page 538 and “ Secure RPC Password and Login Passwords Are
Different” on page 538 for more information on these types of problems.

WARNING: db::checkpoint: could not dump database: No such file
or directory

This message indicates that the system was unable to open a database file during
a checkpoint. Possible causes:

� The database file was deleted.

� The server is out of file descriptors.

� There is a disk problem

� You or the host do not have correct permissions.

WARNING: db_dictionary::add_table: could not initialize database
from scheme

The database table could not be initialized. Possible causes:

� There was a system resource problem See “NIS+ System Resource Problems” on
page 544).

� You incorrectly specified the new table in the command syntax.

� The database is corrupted.

WARNING: db_query::db_query:bad index

608 Solaris Naming Administration Guide ♦ May 1999

In most cases this message indicates incorrect specification of an indexed name.
Make sure that the indexed name is found in the specified table. Check the
command for spelling and syntax errors.

**WARNING: domain domainname already exists.

This message indicates that the domain you tried to create already exists.

� If you are trying to promote a new nonroot master server or are recovering
from a previous nisserver problem, continue running the script.

� If domainname was spelled incorrectly, rerun the script with the correct domain
name.

**WARNING: failed to add new member NIS+_principle into the groupname
group. You will need to add this member manually: 1. /usr/sbin/
nisgrpadm -a groupname NIS+_principal

The NIS+ command nisgrpadm failed to add a new member into the NIS+ group
groupname. Manually add this NIS+ principal by typing:

/usr/sbin/nisgrpadm -a groupname NIS+_principal

**WARNING: failed to populate tablename table.

The nisaddent command was unable to load the NIS+ tablename table. A more
detailed error message usually appears before this warning message.

**WARNING: hostname specified will not be used. It will use the
local hostname instead.

This message indicates that you typed a remote host name with the −H option. The
nisserver −r script does not configure remote machines as root master servers.

� If the local machine is the one that you want to convert to an NIS+ root master
server, no other action is needed. The nisserver −r script will ignore the host
name you typed.

� If you actually want to convert the remote host (instead of the local machine) to
an NIS+ root master server, exit the script. Rerun the nisserver −r script on
the remote host.

**WARNING: hostname is already a server for this domain. If you
choose to continue with the script, it will try to replicate the
groups_dir and org_dir directories for this domain.

This is a message warning you that hostname is already a replica server for the
domain that you are trying to replicate.

� If you are running the script to fix an earlier nisserver problem, continue
running the script.

Error Messages 609

� If hostname was mistakenly entered, rerun the script with the correct host name.

**WARNING: alias-hostname is an alias name for host canonical_hostname.
You cannot create credential for host alias.

This message indicates that you have typed a host alias in the name list for
nisclient −c . The script asks you if you want to create the credential for the
canonical host name, since you should not create credentials for host alias names.

**WARNING: file directory-path/tablename does not exist! tablename table
will not be loaded.

The script was unable to find the input file for tablename.

� If directory-path/tablename is spelled incorrectly, rerun the script with the correct
table name.

� If the directory-path/tablename file does not exist, create and update this file with
the proper data. Then rerun the script to populate this table.

**WARNING: NIS auto.master map conversion failed. auto.master
table will not be loaded.

The auto.master map conversion failed while trying to convert all the dots to
underscores in the auto_master table. Rerun the script with a different NIS server.

**WARNING: NIS netgroup map conversion failed. netgroup table
will not be loaded.

The netgroup map conversion failed while trying to convert the NIS domain
name to the NIS+ domain name in the netgroup map. Rerun the script with a
different NIS server.

**WARNING: nisupdkeys failed on directory domainname. This script
will not be able to continue. Please remove the domainname
directory using ‘nisrmdir’.

The NIS+ command nisupdkeys failed to update the keys in the listed directory
object. If rpc.nisd is not running on the new master server that is supposed to
serve this new domain, restart rpc.nisd . Then use nisrmdir to remove the
domainname directory. Finally, rerun nisserver .

WARNING: nisupdkeys failed on directory directory-name You will
need to run nisupdkeys manually: 1. /usr/lib/nis/nisupdkeys
directory-name

The NIS+ command nisupdkeys failed to update the keys in the listed directory
object. Manually update the keys in the directory object by typing:

/usr/lib/nis/nisupdkeys directory-name

610 Solaris Naming Administration Guide ♦ May 1999

**WARNING: once this script is executed, you will not be able to
restore the existing NIS+ server environment. However, you can
restore your NIS+ client environment using ‘‘nisclient -r’’ with
the proper domainname and server information. Use ‘‘nisclient
-r’’ to restore your NIS+ client environment.

These messages appear if you have already run the script at least once before to
set up an NIS+ server. They indicate that NIS+-related files will be removed and
recreated as needed if you decide to continue running this script.

� If it is all right for these NIS+ files to be removed, continue running the script.

� If you want to save these NIS+ files, exit the script by typing “n” at the
Do you want to continue? prompt. Then save the NIS+ files in a different
directory and rerun the script.

**WARNING: this script removes directories and files related to
NIS+ under /var/nis directory with the exception of the
NIS_COLD_START and NIS_SHARED_DIRCACHE files which will be
renamed to <file>.no_nisplus. If you want to save these files,
you should abort from this script now to save these files first.

See “WARNING: once this script is executed,...” above.

**WARNING: you must specify the NIS domainname.

This message indicates that you did not type the NIS domain name at the prompt.
Type the NIS server domain name at the prompt.

**WARNING: you must specify the NIS server hostname. Please try
again.

This message indicates that you did not type the NIS server host name at the
prompt. Type the NIS server host name at the prompt.

Window verifier mismatch

This is a debugging message generated by the _svcauth_des code. A verifier
could be invalid because a key was flushed out of the cache. When this occurs,
_svcauth_des returns the AUTH_BADCREDstatus.

You (string) do not have Secure RPC credentials in NIS+ domain
’ string’

This message could be caused by trying to run nispasswd on a server that does
not have the credentials required by the command. (Keep in mind that servers
running at security level 0 do not create or maintain credentials.)

See “NIS+ Ownership and Permission Problems” on page 529 for additional
information on credential, ownership, and permission problems.

Error Messages 611

You may not change this password

This message indicates that your administrator has forbidden you to change your
password.

You may not use nisplus repository

You used −r nisplus in the command line of your command, but the
appropriate entry in the NIS+ passwd table was not found. Check the passwd
table in question to make sure it has the entry you want. Try adding nisplus to
the nsswitch.conf file.

Your password has been expired for too long

Your password is expired

These messages refer to password aging. They indicate that your password has
been in use too long and needs to be changed now. See “The
password expired Message” on page 155 for further information.

Your password will expire in nn days

Your password will expire within 24 hours

These messages refer to password aging. They indicate that your password is
about to become invalid and should be changed now. See “The will expire
Message” on page 155 for further information.

Your specified repository is not defined in the nsswitch file!

This warning indicates that you have specified a password information repository
with the −r option, but that password repository is not included in the passwd
entry of the nsswitch.conf file. The command you have just used will perform
its job and make whatever change you intend to the password information
repository you specified with the −r flag. However, the change will be made to
information that the nsswitch.conf file does not point to, so no one will ever
gain the benefit of it until the switch file is altered to point to that repository.

For example, suppose the passwd entry of the switch file reads: files nis , and
you used

passwd -r nisplus

to establish a password age limit. That limit would not affect anyone because they
are still using a switch file set to files nis .

verify_table_exists: cannot create table for string nis_perror
message.

612 Solaris Naming Administration Guide ♦ May 1999

To perform an operation on a table, NIS+ first verifies that the table exists. If the
table does not exist, NIS+ attempts to create it. If it cannot create the table, it
returns this error message. The string portion of the message identifies the table
that could not be located or created; the nis_perror message portion provides
information as to the cause of the problem (you can look up that portion of the
message as if it were an independent message in this appendix). Possible causes
for this type of problem:

� The server was just added as a replica of the directory and it may not have the
directory object. Run nisping −C to checkpoint.

� You are out of disk space. See “Insufficient Disk Space” on page 544.

� Database corruption.

� Some other type of software error. Contact the Sun Solutions Center.

ypcat: can’t bind to NIS server for domain domainname. Reason:
can’t communicate with ypbind.

See “NIS Problems and Solutions” on page 549

yppoll: can’t get any map parameter.

See “NIS Problems and Solutions” on page 549

Error Messages 613

614 Solaris Naming Administration Guide ♦ May 1999

APPENDIX C

Information in NIS+ Tables

This appendix summarizes the information stored in the default NIS+ tables
supplied in the Solaris operating environment (See Chapter 14, for general
information regarding NIS+ tables and the commands used to administer them.)

� “auto_home Table ” on page 617

� “auto_master Table ” on page 617

� “bootparams Table ” on page 618

� “client_info Table ” on page 620

� Table C–4

� “ethers Table ” on page 621

� “group Table ” on page 622

� “hosts Table ” on page 622

� “mail_aliases Table ” on page 623

� “netgroup Table ” on page 624

� “netmasks Table ” on page 625

� “networks Table ” on page 626

� “passwd Table ” on page 626

� “protocols Table ” on page 628

� “rpc Table ” on page 629

� “services Table ” on page 629

� “timezone Table ” on page 630

615

NIS+ Tables
In an NIS+ environment, most namespace information is stored in NIS+ tables.

Without a name service, most network information would be stored in /etc files
and almost all NIS+ tables have corresponding /etc files. With the NIS service, you
stored network information in NIS maps that also mostly corresponded with /etc
files.

Note - This appendix describes only those that are distributed as part of NIS+. Users
and application developers frequently create NIS+ compatible tables for their own
purposes. For information about tables created by users and developers, you must
consult the documentation that they provide.

All NIS+ tables are stored in the domain’s org_dir NIS+ directory object except the
admin and groups tables that are stored in the groups_dir directory object.

Note - Do not link table entries. Tables may be linked to other tables, but do not link
an entry in one table to an entry in another table.

NIS+ Tables and Other Name Services
In the Solaris environment the name service switch file (nsswitch.conf) allows
you to specify one or more sources for different types of namespace information. In
addition to NIS+ tables, sources can be NIS maps, DNS zone files, or /etc tables.
The order in which you specify them in the switch file determines how the
information from different sources is combined. (See Chapter 2 for more information
on the switch file.)

NIS+ Table Input File Format
If you are creating input files for any of these tables, most tables share two
formatting requirements:

� You must use one line per entry

� You must separate columns with one or more spaces or Tabs.

If a particular table has different or additional format requirements, they are
described under the heading, “Input File Format.”

616 Solaris Naming Administration Guide ♦ May 1999

auto_home Table
The auto_home table is an indirect automounter map that enables an NIS+ client to
mount the home directory of any user in the domain. It does this by specifying a
mount point for each user’s home directory, the location of each home directory, and
mount options, if any. Because it is an indirect map, the first part of the mount point
is specified in the auto_master table, which is, by default, /home . The second part
of the mount point (that is, the subdirectory under /home) is specified by the entries
in the auto_home map, and is different for each user.

The auto_home table has two columns:

TABLE C–1 auto_home Table

Column Content Description

Key Mount point The login name of every user in the domain

Value Options &
location

The mount options for every user, if any, and the location of
the user’s home directory

For example:

costas barcelona:/export/partition2/costas

The home directory of the user costas , which is located on the server barcelona ,
in the directory /export/partition2/costas , would be mounted under a
client’s /home/costas directory. No mount options were provided in the entry.

auto_master Table
The auto_master table lists all the automounter maps in a domain. For direct
maps, the auto_master table provides a map name. For indirect maps, it provides
both a map name and the top directory of its mount point. The auto_master table
has two columns:

Information in NIS+ Tables 617

TABLE C–2 auto_master Table

Column Content Description

Key Mount point The top directory into which the map will be mounted. If
the map is a direct map, this is a dummy directory,
represented with /--- .

Value Map name The name of the automounter map

For example, assume these entries in the auto_master table:

/home auto_home
/-auto_man
/programs auto_programs

The first entry names the auto_home map. It specifies the top directory of the
mount point for all entries in the auto_home map: /home . (The auto_home map is
an indirect map.) The second entry names the auto_man map. Because that map is
a direct map, the entry provides only the map name. The auto_man map will itself
provide the topmost directory, as well as the full path name, of the mount points for
each of its entries. The third entry names the auto_programs map and, since it
provides the top directory of the mount point, the auto_programs map is an
indirect map.

All automounter maps are stored as NIS+ tables. By default, the Solaris environment
provides the auto_master map, which is mandatory, and the auto_home map,
which is a great convenience.

You can create more automounter maps for a domain, but be sure to store them as
NIS+ tables and list them in the auto_master table. When creating additional
automount maps to supplement auto_master (which is created for you), the
column names must be key and value . For more information about the
automounter consult your automounter or NFS file system documentation.

bootparams Table
The bootparams table stores configuration information about every diskless
workstation in a domain. A diskless workstation is a workstation that is connected to
a network, but has no hard disk. Since it has no internal storage capacity, a diskless
workstation stores its files and programs in the file system of a server on the
network. It also stores its configuration information—or boot parameters—on a server.

618 Solaris Naming Administration Guide ♦ May 1999

Because of this arrangement, every diskless workstation has an initialization program
that knows where this information is stored. If the network has no name service, the
program looks for this information in the server’s /etc/bootparams file. If the
network uses the NIS+ name service, the program looks for it in the bootparams
table, instead.

The bootparams table can store any configuration information about diskless
workstations. It has two columns: one for the configuration key, another for its value.
By default, it is set up to store the location of each workstation’s root, swap, and
dump partitions.

The default bootparams table has only two columns that provide the following
items of information:

TABLE C–3 bootparams Table

Column Content Description

Key Hostname The diskless workstation’s official host name, as specified in
the hosts table

Value Configuration Root partition: the location (server name and path) of the
workstation’s root partition

Swap partition: the location (server name and path) of the
workstation’s swap partition

Dump partition: the location (server name and path) of the
workstation’s dump partition

Install partition.

Domain.

Input File Format

The columns are separated with a TAB character. Backslashes (\) are used to break a
line within an entry. The entries for root, swap, and dump partitions have the
following format:

client-name root= server:path \
swap=server:path \
dump=server:path \
install= server:path \
domain= domainname

Information in NIS+ Tables 619

Here is an example:

buckarooroot=bigriver:/export/root1/buckaroo \
swap=bigriver:/export/swap1/buckaroo \
dump=bigriver:/export/dump/buckaroo \
install=bigriver:/export/install/buckaroo \
domain=sales.doc.com

Additional parameters are available for x86-based workstations. See
the bootparams man page for additional information.

client_info Table
The client_info table is an optional internal NIS+ table used to store server
preferences for the domain in which it resides. This table is created and maintained
with the nisprefadm command.

Caution - Only use nisprefadm to work with this table. Do not use any other
NIS+ commands on this table.

cred Table
The cred table stores credential information about NIS+ principals. Each domain
has one cred table, which stores the credential information of client workstations
that belong to that domain and client users who are allowed to log into them. (In
other words, the principals of that domain.) The cred tables are located in their
domains’ org_dir subdirectory.

Note - Do not link a cred table. Each org_dir directory should have its own cred
table. Do not use a link to some other org_dir cred table.

The cred table has five columns:

620 Solaris Naming Administration Guide ♦ May 1999

TABLE C–4 cred Table

NIS+ Principal Name
Authentication
Type

Authentication
Name Public Data Private Data

Principal name of a principal user LOCAL UID GID list

Principal name of a principal user or
workstation

DES Secure RPC
netname

Public key Encrypted
private key

The second column, authentication type, determines the types of values found in the
other four columns.

� LOCAL. If the authentication type is LOCAL, the other columns contain a
principal user’s name, UID, and GID; the last column is empty.

� DES. If the authentication type is DES, the other columns contain a principal’s
name, Secure RPC netname, public key, and encrypted private key. These keys are
used in conjunction with other information to encrypt and decrypt a DES
credential.

See Chapter 7, for additional information on credentials and the cred table.

ethers Table
The ethers table stores information about the 48-bit Ethernet addresses of
workstations on the Internet. It has three columns:

TABLE C–5 ethers Table

Column Content Description

Addr Ethernet-address The 48-bit Ethernet address of the workstation

Name Official-host-name The name of the workstation, as specified in the hosts
table

Comment Comment An optional comment about the entry

An Ethernet address has the form:

n: n: n: n: n: n hostname

Information in NIS+ Tables 621

where n is a hexadecimal number between 0 and FF, representing one byte. The
address bytes are always in network order (most significant byte first).

group Table
The group table stores information about UNIX user groups. The group table has
four columns:

TABLE C–6 group Table

Column Description

Name The group’s name

Passwd The group’s password

GID The group’s numerical ID

Members The names of the group members, separated by commas

Earlier Solaris releases used a +/- syntax in local /etc/group files to incorporate or
overwrite entries in the NIS group maps. Since the Solaris environment uses the
name service switch file to specify a workstation’s sources of information, this is no
longer necessary. All you have to do in Solaris Release 2x systems is edit a client’s
/etc/nsswitch.conf file to specify files , followed by nisplus as the sources
for the group information. This effectively adds the contents of the group table to
the contents of the client’s /etc/group file.

hosts Table
The hosts table associates the names of all the workstations in a domain with their
IP addresses. The workstations are usually also NIS+ clients, but they don’t have to
be. Other tables, such as bootparams , group , and netgroup , rely on the network
names stored in this table. They use them to assign other attributes, such as home
directories and group memberships, to individual workstations. The hosts table has
four columns:

622 Solaris Naming Administration Guide ♦ May 1999

TABLE C–7 hosts Table

Column Description

Addr The workstation’s IP address (network number plus workstation ID
number)

Cname The workstation’s official name

Name A name used in place of the host name to identify the workstation

Comment An optional comment about the entry

mail_aliases Table
The mail_aliases table lists the domain’s mail aliases recognized by sendmail . It
has four columns:

TABLE C–8 mail_aliases Table

Column Description

Alias The name of the alias

Expansion A list containing the members that receive mail sent to this alias;
members can be users, workstations, or other aliases

Comment An optional comment about the entry

Options (See man page for options)

Input File Format

Each entry has the following format:

alias-name: member[, member]...

To extend an entry over several lines, use a backslash.

Information in NIS+ Tables 623

netgroup Table
The netgroup table defines network wide groups used to check permissions for
remote mounts, logins, and shells. The members of net groups used for remote
mounts are workstations; for remote logins and shells, they are users.

Note - Users working on a client machine being served by a NIS+ server running in
compatibility mode cannot run ypcat on the netgroup table. Doing so will give
you results as if the table were empty even if it has entries.

The netgroup table has six columns:

TABLE C–9 netgroup Table

Column Content Description

Name groupname The name of the network group

Group groupname Another group that is part of this group

Host hostname The name of a host

User username A user’s login name

Domain domainname A domain name

Comment Comment An optional comment about the entry

Input File Format

The input file consists of a group name and any number of members:

groupname member-list...

The member list can contain the names of other net groups or an ordered member
list with three fields or both:

member-list::= groupname | (hostname, username, domainname)

The first field of the member list specifies the name of a workstation that belongs to
the group. The second field specifies the name of a user that belongs to the group.
The third field specifies the domain in which the member specification is valid.

624 Solaris Naming Administration Guide ♦ May 1999

A missing field indicates a wildcard. For example, the netgroup specification
shown below includes all workstations and users in all domains:

everybody (, ,)

A dash in a field is the opposite of a wildcard; it indicates that no workstations or
users belong to the group. Here are two examples:

(host1, -,doc.com.) (-,joe,doc.com.)

The first specification includes one workstation, host1 , in the doc.com. domain,
but excludes all users. The second specification includes one user in the doc.com.
domain, but excludes all workstations.

netmasks Table
The netmasks table contains the network masks used to implement standard
Internet subnetting. The table has three columns:

TABLE C–10 netmasks Table

Column Description

Addr The IP number of the network

Mask The network mask to use on the network

Comment An optional comment about the entry

For network numbers, you can use the conventional IP dot notation used by
workstation addresses, but leave zeros in place of the workstation addresses. For
example, this entry

128.32.0.0 255.255.255.0

means that class B network 128.32.0.0 should have 24 bits in its subnet field, and 8
bits in its host field.

Information in NIS+ Tables 625

networks Table
The networks table lists the networks of the Internet. This table is normally created
from the official network table maintained at the Network Information Control Center
(NIC), though you may need to add your local networks to it. It has four columns:

TABLE C–11 networks Table

Column Description

Cname The official name of the network, supplied by the Internet

Addr The official IP number of the network

Name An unofficial name for the network

Comment An optional comment about the entry

passwd Table
The passwd table contains information about the accounts of users in a domain.
These users generally are, but do not have to be, NIS+ principals. Remember though,
that if they are NIS+ principals, their credentials are not stored here, but in the
domain’s cred table. The passwd table usually grants read permission to the world
(or to nobody).

Note - There should not be any entry in this table for the user root (user ID 0). Root’s
password information should be stored and maintained in the machine’s /etc files.

The information in the passwd table is added when users’ accounts are created.

The passwd table contains the following columns:

626 Solaris Naming Administration Guide ♦ May 1999

TABLE C–12 passwd Table

Column Description

Name The user’s login name, which is assigned when the user’s account is
created; the name can contain no uppercase characters and can have a
maximum of eight characters

Passwd The user’s encrypted password

UID The user’s numerical ID, assigned when the user’s account is created

GID The numerical ID of the user’s default group

GCOS The user’s real name plus information that the user wishes to include
in the From: field of a mail-message heading; an “&” in this column
simply uses the user’s login name

Home The path name of the user’s home directory.

Shell The user’s initial shell program; the default is the Bourne shell: /usr/
bin/sh.

Shadow (See Table C–13.)

The passwd table shadow column stores restricted information about user accounts.
It includes the following information:

TABLE C–13 passwd Table Shadow Column

Item Description

Lastchg The number of days between January 1, 1970, and the date the
password was last modified

Min The minimum number of days recommended between password
changes

Max The maximum number of days that the password is valid

Warn The number of days’ warning a user receives before being notified that
his or her password has expired

Inactive The number of days of inactivity allowed for the user

Information in NIS+ Tables 627

TABLE C–13 passwd Table Shadow Column (continued)

Item Description

Expire An absolute date past which the user’s account is no longer valid

Flag Reserved for future use: currently set to 0.

Earlier Solaris releases used a +/- syntax in local /etc/passwd files to incorporate
or overwrite entries in the NIS password maps. Since the Solaris Release 2x
environment uses the name service switch file to specify a workstation’s sources of
information, this is no longer necessary. All you have to do in Solaris Release 2x
systems is edit a client’s /etc/nsswitch.conf file to specify files , followed by
nisplus as the sources for the passwd information. This effectively adds the
contents of the passwd table to the contents of the /etc/passwd file.

However, if you still want to use the +/- method, edit the client’s nsswitch.conf
file to add compat as the passwd source if you are using NIS. If you are using NIS+,
add passwd_compat: nisplus .

protocols Table
The protocols table lists the protocols used by the Internet. It has four columns:

TABLE C–14 protocols Table

Column Description

Cname The protocol name

Name An unofficial alias used to identify the protocol

Number The number of the protocol

Comments Comments about the protocol

628 Solaris Naming Administration Guide ♦ May 1999

rpc Table
The rpc table lists the names of RPC programs. It has four columns:

TABLE C–15 rpc Table

Column Description

Cname The name of the program

Name Other names that can be used to invoke the program

Number The program number

Comments Comments about the RPC program

Here is an example of an input file for the rpc table:

#
rpc file
#
rpcbind 00000 portmap sunrpc portmapper
rusersd 100002 rusers
nfs 100003 nfsprog
mountd 100005 mount showmount
walld 100008 rwall shutdown
sprayd 100012 spray
llockmgr 100020
nlockmgr 100021
status 100024
bootparam 100026
keyserv 100029 keyserver
nisd 100300 rpc.nisd
#

services Table
The services table stores information about the Internet services available on the
Internet. It has five columns:

Information in NIS+ Tables 629

TABLE C–16 services Table

Column Description

Cname The official Internet name of the service

Name The list of alternate names by which the service can be requested

Proto The protocol through which the service is provided (for
instance, 512/tcp)

Port The port number

Comment Comments about the service

timezone Table
The timezone table lists the default timezone of every workstation in the domain.
The default time zone is used during installation but can be overridden by the
installer. The table has three columns:

TABLE C–17 timezone Table

Field Description

Name The name of the domain

Tzone The name of the time zone (for example, US/Pacific)

Comment Comments about the time zone

630 Solaris Naming Administration Guide ♦ May 1999

APPENDIX D

FNS Reference Formats and Syntax

This appendix contains supplemental information about the use of DNS text (TXT)
records and the use of X.500 attributes in XFN references.

� “DNS Text Record Format for XFN References ” on page 631

� “X.500 Attribute Syntax for XFN References ” on page 633

DNS Text Record Format for XFN
References
The Solaris environment conforms to the XFN specification for federating global
naming systems within DNS. In order to federate a naming system under DNS, you
will need to enter information into DNS TXT resource records. This information will
then be used to construct an XFN reference for that subordinate naming system. This
appendix describes the format of these DNS TXT records.

� See Chapter 26. for the procedures needed to federate DNS.

� For details on how to manipulate records in DNS in general, see DNS and BIND in
a Nutshell, by Paul Albitz and Crickett Liu, (O’Reilly and Associates, 1992).

The reference type of an XFN reference is constructed from a TXT record that begins
with the XFNREFtag. It has the following format:

TXT "XFNREF rformat reftype"

If spaces occur within the string appearing after TXT, such spaces must be escaped,
or the entire string must be enclosed within double quotation marks. The three
fields, XFNREF, rformat and reftype, are separated using space (spaces and tabs).
rformat specifies format of the reference type identifier. It can be one of

631

� STRING– Maps to FN_ID_STRING format

� OID – Maps to FN_ID_ISO_OID_STRING format

� UUID – Maps FN_ID_DCE_UUID format

reftype specifies the contents of the reference type identifier.

If no XFNREFTXT record exists, the reference type defaults to an identifier
XFN_SERVICE, with an FN_ID_STRING format. If more than one XFNREFTXT
record exists, the handling of the record is undefined. The following TXT record is
equivalent to the default XFNREF:

TXT "XFNREF STRING XFN_SERVICE"

The address information for an XFN reference is constructed using TXT records with
tags prefixed with the XFN string. Multiple addresses may be specified for a single
reference. Records with the same tag are grouped and passed to the handler for each
group. Each handler generates zero or more addresses from its group of TXT records
and appends the addresses to the reference. The XFNREFtag is special in that it is
used only to construct the reference type and thus, it is excluded from the
address-construction process.

The syntax of address TXT records is as follows:

XFNaddress_type_tag address_specific_data

The two fields, XFN_address_type_tag and address_specific_data, are separated using
space (spaces and tabs). The address_type_tag specifies the handler to be used for
address_specific_data.

TXT records have a limitation of 2K bytes of characters per record. If the
address-specific data is too long to be stored in a single TXT record, multiple TXT
records may be used, as shown:

TXT "XFNaddress_type_tag address_specific_data1"
TXT "XFNaddress_type_tag address_specific_data2"

When the tag-specific handler is called, both records are passed to it. The handler is
responsible for determining the order in which these two lines need to be interpreted.

The order in which TXT records appear is not significant. If lines with different tags
are present, lines with the same tag are grouped together before the tag-specific
handler is called. In the following example, the handler for tag1 will be called with
two text lines, and the handler for tag2 will be called with three text lines.

632 Solaris Naming Administration Guide ♦ May 1999

TXT " XFNtag1 address_specific_data1"
TXT " XFNtag2 address_specific_data2"
TXT " XFNtag1 address_specific_data3"
TXT " XFNtag2 address_specific_data4"

TXT " XFNtag2 address_specific_data5"

Here are some examples of TXT records that can be used for XFN references.

Example 1

TXT "XFNREF STRING XFN_SERVICE"
TXT "XFNNISPLUS doc.com. nismaster 129.144.40.23"

Example 2

TXT "XFNREF OID 1.3.22.1.6.1.3"
TXT "XFNDCE (1 fd33328c4-2a4b-11ca-af85-09002b1c89bb...)"

The following is an example of a DNS table with a subordinate naming system
bound in it.

$ORIGIN test.doc.com
@ IN SOA foo root.eng.doc.com (

100 ;; Serial
3600 ;; Refresh
3600 ;; Retry
3600 ;; Expire
3600 ;; Minimum

)
NS nshost
TXT "XFNREF STRING XFN_SERVICE"
TXT "XFNNISPLUS doc.com. nismaster 129.144.40.23"

nshost IN A 129.144.40.21

X.500 Attribute Syntax for XFN
References
This section contains supplemental information about the use of X.500 attributes for
XFN references. In order to permit an XFN reference to be stored as an attribute in

FNS Reference Formats and Syntax 633

X.500, the directory schema must be modified to support the object classes and
attributes defined in this appendix.

� See Chapter 26. for the procedures needed to federate X.500.

� See Managing the X.500 Client Toolkit for information about modifying the X.500
directory schema.

Object Classes
Two new object classes, XFN and XFN-supplement, are introduced to support XFN
references. The XFN object class is not relevant in FNS since SunSoft’s X.500
directory product cannot support the introduction of new compound ASN.1
syntaxes. Instead, FNS uses the XFN-supplement object class.

The two new object classes are defined in ASN.1 as follows:

xFN OBJECT-CLASS ::= {
SUBCLASS OF { top }
KIND auxiliary
MAY CONTAIN { objectReferenceId |

objectReference |
nNSReferenceId |
nNSReference }

ID id-oc-xFN
}
id-oc-xFN OBJECT IDENTIFIER ::= {

iso(1) member-body(2) ansi(840) sun(113536)
ds-oc-xFN(24)

}
xFNSupplement OBJECT-CLASS ::= {

SUBCLASS OF { top }
KIND auxiliary
MAY CONTAIN { objectReferenceString |

nNSReferenceString }
ID id-oc-xFNSupplement

}
id-oc-xFNSupplement OBJECT IDENTIFIER ::= {

iso(1) member-body(2) ansi(840) sun(113536)
ds-oc-xFNSupplement(25)

}

The XFN-supplement object class is defined as an auxiliary object class so that it may
be inherited by all X.500 object classes. It is defined with two optional attributes:

� objectReferenceString is used to hold an XFN reference to the object itself.

� nNSReferenceString is used to hold an XFN reference to a next naming
system.

Both attributes are defined in ASN.1 as follows:

634 Solaris Naming Administration Guide ♦ May 1999

objectReferenceString ATTRIBUTE ::= {
WITH SYNTAX OCTET STRING
EQUALITY MATCHING RULE octetStringMatch
SINGLE VALUE TRUE
ID { id-at-objectReferenceString }

}
id-at-objectReferenceString OBJECT IDENTIFIER ::= {

iso(1) member-body(2) ansi(840) sun(113536)
ds-at-objectReferenceString(30)

}
nNSReferenceString ATTRIBUTE ::= {

WITH SYNTAX OCTET STRING
EQUALITY MATCHING RULE octetStringMatch
SINGLE VALUE TRUE
ID { id-at-nNSReferenceString }

}
id-at-nNSReferenceString OBJECT IDENTIFIER ::= {

iso(1) member-body(2) ansi(840) sun(113536)
ds-at-nNSReferenceString(31)

}

Both objectReferenceString and nNSReferenceString store XFN references
in a string form. Their octet string syntax is further constrained to conform to the
following BNF definition:

<ref> ::= <id> ’$’ <ref-addr-set>
<ref-addr-set> ::= <ref-addr> | <ref-addr> ’$’ <ref-addr-set>
<ref-addr> ::= <id> ’$’ <addr-set>
<addr> ::= <hex-string>
<id> ::= ’id’ ’$’ <string> |

’uuid’ ’$’ <uuid-string> |
’oid’ ’$’ <oid-string>

<string> ::= <char> | <char> <string>
<char> ::= <PCS> | ’\’ <PCS>
<PCS> ::= // Portable Character Set:

// !"#$%&’()*+,-./0123456789:;<=>?
// @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
// ‘abcdefghijklmnopqrstuvwxyz{|}~

<uuid-string> ::= <uuid-char> | <uuid-char> <uuid-string>
<uuid-char> ::= <hex-digit> | ’-’
<oid-string> ::= <oid-char> | <oid-char> <oid-string>
<oid-char> ::= <digit> | ’.’
<hex-string> ::= <hex-octet> | <hex-octet> <hex-string>
<hex-octet> ::= <hex-digit> <hex-digit>
<hex-digit> ::= <digit> |

’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ |
’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’

<digit> ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ |
’6’ | ’7’ | ’8’ | ’9’

The following example is a string form XFN reference:

id$onc_fn_enterprise$id$onc_fn_nisplus_root$0000000f77697a2e636fd2e2062696762696700

FNS Reference Formats and Syntax 635

The example uses an XFN reference of type onc_fn_enterprise . It contains the
address type onc_fn_nisplus_root and a single address value. The address value
is an XDR-encoded string, comprising the domain name, doc.com , followed by the
host name, cygnus .

An XFN reference may be added to an X.500 entry by using the FNS command
fnattr , as in this example:

fnattr -a .../c=us/o=doc object-class top organization xfn-supplement

creates a new entry called c=us/o=doc and adds an object class attribute with the
values top , organization , and XFN-supplement .

The FNS command fnbind binds the NIS+ reference to the named entry and links
X.500 to the root of the NIS+ namespace. (Note the use of a trailing slash in the name
argument to fnbind .)

fnbind -r .../c=us/o=doc/ onc_fn_enterprise onc_fn_nisplus_root
"doc.com. cygnus"

636 Solaris Naming Administration Guide ♦ May 1999

Glossary

access rights The permissions assigned to classes of NIS+ principals that
determine what operations they can perform on NIS+ objects: read,
modify, create or destroy.

application-level
name service

Application-level name services are incorporated in applications
offering services such as files, mail, and printing. Application-level
name services are bound below enterprise-level name services. The
enterprise-level name services provide contexts in which contexts of
application-level name services can be bound.

atomic name An FNS (XFN) term referring to the smallest indivisible component
of a name as defined by the naming convention.

attribute In FNS (XFN), each named object is associated with a set of zero or
more attributes. Each attribute in the set has a unique attribute
identifier, an attribute syntax, and a set of zero or more distinct
attribute values.

authentication The determination of whether an NIS+ server can identify the
sender of a request for access to the NIS+ namespace. Authenticated
requests are divided into the authorization categories of owner,
group, and world. Unauthenticated requests—the sender is
unidentified, are placed in the Nobody category. Whether or not
such a request a>

binding In FNS (XFN), the association of an atomic name with an object
reference. For simplicity, an object reference and the object it refers
to are used interchangeably in this guide.

BNF An FNS (XFN) acronym referring to a Backus-Naur Form.

cache manager The program that manages the local caches of NIS+ clients
(NIS_SHARED_DIRCACHE), which are used to store location

Glossary-637

information about the NIS+ servers that support the directories
most frequently used by those clients, including transport addresses,
authentication information, and a time-to-live value.

child domain See domain.

checkpointing The process of writing changes to NIS+ data that are stored in
server memory and recorded in the transaction log to the NIS+
tables stored on disk. In other words, updating the NIS+ tables with
recent changes to the NIS+ data set.

client (1) In NIS+, the client is a principal (machine or user) requesting an
NIS+ service from an NIS+ server.

(2) In the client-server model for file systems, the client is a machine
that remotely accesses resources of a compute server, such as
compute power and large memory capacity.

(3) In the client-server model, the client is an application that accesses
services from a “server process.” In this model, the client and the
server can run on the same machine or on separate machines.

client-server model A common way to describe network services and the model user
processes (programs) of those services. Examples include the
name-server/name-resolver paradigm of the Domain Name System
(DNS) and file-server/file-client relationships such as NFS and
diskless hosts. See also client.

cold-start file The NIS+ file given to a client when it is initialized that contains
sufficient information so that the client can begin to contact the
master server in its home domain.

composite name In FNS (XFN), a name that spans multiple naming systems. It
consists of an ordered list of zero or more components. Each
component is a name from the namespace of a single naming
system. Composite name resolution is the process of resolving a
name that spans multiple naming systems.

compound name In FNS (XFN), a sequence of atomic names composed according to
the naming convention of a naming system.

context In FNS (XFN), an object whose state is a set of bindings with
distinct atomic names. Every context has an associated naming
convention. A context provides a lookup (resolution) operation,
which returns the reference, and may provide operations such as
binding names, unbinding names, and listing bound names.

Glossary-638 Solaris Naming Administration Guide ♦ May 1999

credentials The authentication information about an NIS+ principal that the
client software sends along with each request to an NIS+ server.
This information verifies the identity of a user or machine.

data encrypting key A key used to encipher and decipher data intended for programs
that perform encryption. Contrast with key encrypting key.

data encryption
standard (DES)

A commonly used, highly sophisticated algorithm developed by the
U.S. National Bureau of Standards for encrypting and decrypting
data. See also SUN-DES-1.

decimal dotted
notation

The syntactic representation for a 32-bit integer that consists of four
8-bit numbers written in base 10 with periods (dots) separating
them. Used to represent IP addresses in the Internet as in:
192.67.67.20.

DES See data encryption standard (DES).

directory (1) An NIS+ directory is a container for NIS+ objects such as NIS+
tables, groups, or subdirectories

(2) In UNIX, a container for files and subdirectories.

directory cache A local file used to store data associated with directory objects.

distinguished name A distinguished name is an entry in an X.500 directory information
base (DIB) composed of selected attributes from each entry in the
tree along a path leading from the root down to the named entry.

DNS See Domain Name System.

DNS-forwarding An NIS server or an NIS+ server with NIS compatibility set
forwards requests it cannot answer to DNS servers.

DNS zones Administrative boundaries within a network domain, often made
up of one or more subdomains.

DNS zone files A set of files wherein the DNS software stores the names and IP
addresses of all the workstations in a domain.

domain (1) In NIS+ a group of hierarchical objects managed by NIS+. There
is one highest level domain (root domain) and zero or more
subdomains. Domains and subdomains may be organized around
geography, organizational or functional principles.

Glossary-639

� Parent domain. Relative term for the domain immediately above
the current domain in the hierarchy.

� Child domain. Relative term for the domain immediately below
the current domain in the hierarchy.

� Root domain. Highest domain within the current NIS+ hierarchy.

(2) In the Internet, a part of a naming hierarchy usually
corresponding to a Local Area Network (LAN) or Wide Area
Network (WAN) or a portion of such a network. Syntactically, an
Internet domain name consists of a sequence of names (labels)
separated by periods (dots). For example, sales.doc.com .

(3) In International Organization for Standardization’s open systems
interconnection (OSI), “domain” is generally used as an
administrative partition of a complex distributed system, as in MHS
private management domain (PRMD), and directory management
domain (DMD).

domain name The name assigned to a group of systems on a local network that
share DNS administrative files. The domain name is required for the
network information service database to work properly. See also
domain.

Domain Name
System (DNS)

A system that provides the naming policy and mechanisms for
mapping domain and machine names to addresses outside of the
enterprise, such as those on the Internet. DNS is the network
information service used by the Internet.

encryption key See data encrypting key.

enterprise-level
name service

An enterprise-level naming service identifies (names) machines
(hosts), users and files within an enterprise-level network. FNS also
allows naming of organizational units, geographic sites, and
application services.

enterprise-level
network

An “enterprise-level” network can be a single Local Area Network
(LAN) communicating over cables, infra-red beams, or radio
broadcast; or a cluster of two or more LANs linked together by
cable or direct phone connections. Within an enterprise-level
network, every machine is able to communicate with every other
machine without reference to a global naming service such as DNS
or X.500/LDAP.

enterprise root In FNS (XFN), the root context of an enterprise. A context for
naming objects found at the root of the enterprise namespace.

Glossary-640 Solaris Naming Administration Guide ♦ May 1999

entry A single row of data in a database table.

federated naming
service

The service offered by a federated naming system.

federated naming
system

An aggregation of autonomous naming systems that cooperate to
support name resolution of composite names through a standard
interface. Each member of a federation has autonomy in its choice
of operations other than name resolution.

federated
namespace

An FNS (XFN) term referring to the set of all possible names
generated according to the policies that govern the relationships
among member naming systems and their respective namespaces.

FNS See Federated naming service.

generic context In FNS (XFN), a context for binding names used in applications.

GID See group ID.

global context In FNS (XFN), a context for naming objects that have global names
(currently, DNS and X.500 are the only global naming systems
specified by XFN).

global name service A global naming service identifies (names) those enterprise-level
networks around the world that are linked together via phone,
satellite, or other communication systems. This world-wide
collection of linked networks is known as the “Internet.” In addition
to naming networks, a global naming service also identifies
individual machines and users within a given network.

group (1) A collection of users who are referred to by a common name.

(2) In NIS+ a collection of users who are collectively given specified
access rights to NIS+ objects. NIS+ group information is stored in
the NIS+ group table.

(3) In UNIX, groups determine a user’s access to files. There are two
types of groups: default user group and standard user group.

group ID A number that identifies the default group for a user.

host context In FNS (XFN), a context for naming objects related to a computer.

implicit naming
system pointer

An FNS (XFN) term referring to an unnamed reference that points
to a context in another naming system.

Glossary-641

indexed name A naming format used to identify an entry in a table.

initial context In FNS (XFN), every XFN name is interpreted relative to some
context, and every XFN naming operation is performed on a context
object. The XFN interface provides a function that allows the client
to obtain an initial context object that provides a starting point for
resolution of composite names.

initial context
function

An FNS function, fn_ctx_handle_from_initial() , that
obtains the initial context which allows a client to obtain an initial
starting point for name resolution.

Internet The world-wide collection of networks interconnected by a set of
routers that enable them to function and communicate with each
other as a single virtual network.

Internet address A 32-bit address assigned to hosts using TCP/IP. See decimal dotted
notation.

IP Internet Protocol. The network layer protocol for the Internet protocol
suite.

IP address A unique number that identifies each host in a network.

junction An FNS (XFN) term referring to a name in one namespace bound to
a context in the next naming system.

key (column) An NIS+ table entry’s data can be accessed from any column,
regardless of that table’s key.

key (encrypting) A key used to encipher and decipher other keys, as part of a key
management and distribution system. Contrast with data encrypting
key.

key server A Solaris operating environment process that stores private keys.

local-area network
(LAN)

Multiple systems at a single geographical site connected together for
the purpose of sharing and exchanging data and software.

mail exchange
records

Files that contain a list of DNS domain names and their
corresponding mail hosts.

mail hosts A workstation that functions as an email router and receiver for a
site.

Glossary-642 Solaris Naming Administration Guide ♦ May 1999

master server The server that maintains the master copy of the network
information service database for a particular domain. Namespace
changes are always made to the name service database kept by the
domain’s master server. Each domain has only one master server.

MIS Management information systems (or services)

naming convention In FNS (XFN), every name is generated by a set of syntactic rules
called a naming convention.

name resolution The process of translating workstation or user names to addresses.

name server Servers that run one or more network name services.

name service switch A configuration file (/etc/nsswitch.conf) that defines the
sources from which an NIS+ client can obtain its network
information.

name service A network service that handles machine, user, printer, domain,
router, an other network names and addresses.

namespace (1) A namespace stores information that users, workstations, and
applications must have to communicate across the network.

(2) The set of all names in a naming system.

(3) NIS+ namespace, A collection of hierarchical network information
used by the NIS+ software.

(4) NIS namespace. A collection of non-hierarchical network
information used by the NIS software.

(5) DNS namespace. A collection of networked workstations that use
the DNS software.

namespace identifier An FNS (XFN) term referring to a special atomic name used to refer
to the root of a namespace.

naming system In FNS (XFN), a connected set of contexts of the same type (having
the same naming convention) and providing the same set of
operations with identical semantics. In the UNIX operating
environment, for example, the set of directories in a given file
system (and the naming operations on directories) constitutes a
naming system.

network mask A number used by software to separate the local subnet address
from the rest of a given Internet protocol address.

Glossary-643

next naming system
pointer (NNSP)

In FNS (XFN), a reference to a context in which composite names
from subordinate naming systems are resolved.

network password See Secure RPC password.

NIS A distributed network information service containing key
information about the systems and the users on the network. The
NIS database is stored on the master server and all the replica or slave
servers.

NIS maps A file used by NIS that holds information of a particular type, for
example, the password entries of all users on a network or the
names of all host machines on a network. Programs that are part of
the NIS service query these maps. See also NIS.

NIS+ A distributed network information service containing hierarchical
information about the systems and the users on the network. The
NIS+ database is stored on the master server and all the replica servers.

NIS-compatibility
mode

A configuration of NIS+ that allows NIS clients to have access to the
data stored in NIS+ tables. When in this mode, NIS+ servers can
answer requests for information from both NIS and NIS+ clients.

NIS+ environment For administrative purposes, an NIS+ environment refers to any
situation in which the applicable nsswitch.conf file points to
nisplus . Or any time a command is run with an option that forces
it to operate on objects in an NIS+ namespace (for example,
passwd -r nisplus).

NIS+ object An NIS+ domain, directory, table, or group. See domain, directory,
group, and table.

NIS+ principal See principal.

NIS+ transaction log A file that contains data updates destined for the NIS+ tables about
objects in the namespace. Changes in the namespace are stored in
the transaction log until they are propagated to replicas. The
transaction log is cleared only after all of a master server’s replicas
have been updated.

NNSP See next naming system pointer.

organizational units In FNS (XFN), an enterprise is organized into organizational units
such as centers, laboratories, departments, divisions, and so on. An
organizational unit is a subunit of an enterprise.

Glossary-644 Solaris Naming Administration Guide ♦ May 1999

organizational unit
context

In FNS (XFN), a context for naming objects related to an
organizational unit within an enterprise.

parent context In FNS (XFN), a context in which this context and its siblings are
bound.

parent domain See domain.

pinging The process by which an NIS+ master server transfers a change a
NIS+ data to the domain’s replica servers.

preference rank
number

A number which a machine uses to rank the order in which it tries
to obtain namespace information from NIS+ servers. A machine will
first try all servers with a given rank number before trying any
server with the next highest rank number. For example, a machine
will query NIS+ servers with a rank number of 0 before it queries
any server with a rank number of 1.

preferred server From the point of view of a client machine, a preferred NIS+ server
is a server that the client should try to use for namespace
information ahead of non-preferred servers. Servers that are listed
in a client or domain’s preferred server list are considered preferred
servers for that client or domain.

preferred server list A client_info table or a client_info file. Preferred server lists
specify the preferred servers for a client or domain.

principal Any user of NIS+ information whose credentials have been stored
in the namespace. Any user or machine that can generate a request
to a NIS+ server. There are two kinds of NIS+ principal: client users
and client machines:

� Root principal. A machine root user (user ID = 0). Requires only a
DES credential.

� User principal. Any nonroot user (user ID > 0). Requires local and
DES credentials.

private key The private component of a pair of mathematically generated
numbers, which, when combined with a private key, generates the
DES key. The DES key in turn is used to encode and decode
information. The private key of the sender is only available to the
owner of the key. Every user or machine has its own public and
private key pair.

Glossary-645

public key The public component of a pair of mathematically generated
numbers, which, when combined with a private key, generates the
DES key. The DES key in turn is used to encode and decode
information. The public key is available to all users and machines.
Every user or machine has their own public and private key pair.

populate tables Entering data into NIS+ tables either from files or from NIS maps.

record See entry.

reference An FNS (XFN) term referring to the thing bound to a name. It
contains addresses identifying the communication endpoints of the
object.

remote procedure
call (RPC)

An easy and popular paradigm for implementing the client-server
model of distributed computing. A request is sent to a remote
system to execute a designated procedure, using arguments
supplied, and the result is returned to the caller.

replica server NIS+ server that maintains a duplicate copy of the domain’s master
NIS+ server database. Replicas run NIS+ server software and
maintain copies of NIS+ tables. A replica server increases the
availability of NIS+ services. Each NIS+ domain should have at
least one, and perhaps more, replicas. (In an NIS namespace, a
replica server was known as a slave server.)

reverse resolution The process of converting workstation IP addresses to workstation
names using the DNS software.

root context In FNS (XFN), a context for naming the objects found in the root of
the namespace.

root domain See domain.

root master server The master server for a NIS+ root domain.

root replica server NIS+ server that maintains a duplicate copy of the root domain’s
master NIS+ server database.

RPC See remote procedure call (RPC).

Secure RPC
password

Password required by Secure RPC protocol. This password is used
to encrypt the private key. This password should always be
identical to the user’s login password.

Glossary-646 Solaris Naming Administration Guide ♦ May 1999

server (1) In NIS+, NIS, DNS, and FNS (XFN) a host machine providing
naming services to a network.

(2) In the client-server model for file systems, the server is a machine
with computing resources (and is sometimes called the compute
server), and large memory capacity. Client machines can remotely
access and make use of these resources. In the client-server model
for window systems, the server is a process that provides
windowing services to an application, or “client process.” In this
model, the client and the server can run on the same machine or on
separate machines.

(3) A daemon that actually handles the providing of files.

server list See preferred server list.

service context In FNS (XFN), a context for naming objects that provide services.

site context In FNS (XFN), a context for naming objects related to a physical site.

slave server (1) A server system that maintains a copy of the NIS database. It
has a disk and a complete copy of the operating environment.

(2) Slave servers are called replica servers in NIS+.

strong separation An FNS (XFN) term referring to cases where the XFN context treats
the XFN component separator as the naming system boundary.

subcontext In FNS (XFN), a context bound within another context.

subnet A working scheme that divides a single logical network into smaller
physical networks to simplify routing.

table In NIS+ a two-dimensional (nonrelational) database object
containing NIS+ data in rows and columns. (In NIS an NIS map is
analogous to a NIS+ table with two columns.) A table is the format
in which NIS+ data is stored. NIS+ provides 16 predefined or
system tables. Each table stores a different type of information.

TCP See Transport Control Protocol (TCP).

TCP/IP Acronym for Transport Control Protocol/Interface Program. The
protocol suite originally developed for the Internet. It is also called
the Internet protocol suite. Solaris networks run on TCP/IP by
default.

Glossary-647

Transport Control
Protocol (TCP)

The major transport protocol in the Internet suite of protocols
providing reliable, connection-oriented, full-duplex streams. Uses IP
for delivery. See TCP/IP.

user context In FNS (XFN), a context for naming objects related to a human user.

weak separation An FNS (XFN) term referring to cases where the XFN context does
not treat the XFN component separator as the naming system
boundary.

wide-area network
(WAN)

A network that connects multiple local-area networks (LANs) or
systems at different geographical sites via phone, fiber-optic, or
satellite links.

XFN link In FNS (XFN), a special form of reference that has a composite
name as an address. Like any other type of reference, an XFN link is
bound to an atomic name in a context.

X.500 A global-level directory service defined by an Open Systems
Interconnection (OSI) standard.

Glossary-648 Solaris Naming Administration Guide ♦ May 1999

Index

Special Characters
+/- Syntax

compat, 21
nsswitch.conf files, 21
passwd_compat, 21

, see FNS,

A
access rights, 637
access rights, see security,
administrative domain (DNS), 476
administrative domain (DNS), see DNS,

administrative domains,
aging passwords, see passwords, aging,
API

NIS+, 36
Application Programmer’s Interface, see API,
application-level, 637
applications and FNS, 373
.asc, 322
atomic name, 637
atomic names, see FNS,
attempt to remove a non-empty table

messages (NIS+), 522
attribute, 637
attributes (FNS), see FNS,
authentication, 33, 637

principals, how authenticated, 85 to 87
time stamp, 88

Authentication denied messages (NIS+), 531
Authentication error messages (NIS+), 531
authorization, 32

automounter
maps, additional, 61

auto_direct.time maps, 318
auto_home maps, 618
auto_home tables

nsswitch.conf file, and, 16
auto_home tables (NIS+), 617

columns, 617
auto_home.time maps, 318
auto_man maps, 618
auto_master maps, 618
auto_master tables

automount maps, additional, 61
nsswitch.conf file, and, 16

auto_master tables (NIS+), 617, 618
columns, 618

auto_programs maps, 618
awk, 322

B
backup-restore (NIS+), 271

See also nisbackup and nisrestore,
automating, 274
backup directory, 275
backup files, 276
chronological sequence of, 274
ctx_dir directories, 274
data checking not performed, 272
data on master only, 273
file system backup, and, 274
master server only, 272, 273
namespace, entire, 273, 275

Index-649

over-writing, 274
restoring, 277
servers, replacing, 280
specific directories only, 275
subdirectories, and, 272
subdomains, and, 274
target directories, 274
XDR encoding, 276

backup_list files, 276
Berkeley Internet Name Domain, see DNS,
BIND, see DNS,
binding, 637
BNF, 637
bootparams tables (NIS+), 618

input file format, 619
Busy try again later messages (NIS+), 540

C
cache files (DNS), see named.ca files,
cache manager, 48, 209, 637

missing, 542
server preference (NIS+), 253
server preferences and, 256
starting, 209
stopping, 209

caching-only servers, see DNS, servers,
Callback: - select failed messages (NIS+), 523
CALLBACK_SVC: bad argument messages

(NIS+), 523
Can’t find messages (DNS), 559
Can’t find suitable transport messages

(NIS+), 526
Cannot find messages (NIS+), 526
Cannot get public key messages (NIS+), 531
Cannot obtain initial context messages

(FNS), 561
Cannot remove replica messages (NIS+), 522
“Cannot [do something] with log” type

messages (NIS+), 544
canonical, 387
canonical identifiers (FNS), see FNS,
Changing Key messages (NIS+), 530
checkpointing, 638
checkpointing, see nisping,
child domain, 638
chkey, 79, 92, 99, 101, 102, 108, 109, 163, 539

Chkey failed messages, 531

root password, changing, 157
Chkey failed messages (NIS+), 531
CHKPIPE, 319
client, 638
client-server model, 638
clients

keys, updating, 116
NIS, 295
NIS+, 47
NIS+ initializing, 207
preferred servers, designating (NIS+), 252
search behavior (NIS+), 252

client_info files, 259, 263
client_info files and tables, 253, 254

changing, 254
rank numbers, 254, 255
single client, 256
subnet, 256

client_info tables (NIS+), 620
cold-start file, 638
cold-start files, 48

nisupdkeys and, 114
column values (NIS+ tables), see nistbladm,

column values,
composite name, 638
composite names (FNS), see FNS,
compound name, 638
compound names (FNS), see FNS,
configuration file (DNS), see named.conf file,
configuration files (NIS), see NIS maps,
configuration, see setup,
context, 638
contexts (FNS), see FNS,
core files, 520
Corrupt database messages (NIS+), 523
Corrupt log messages (NIS+), 523
create, 129
create rights, see security, access rights,
cred table

contents, displaying, 236
cred tables

authentication types, 95
details of, 94, 95
entries missing, 537
links not allowed, 243
links, and, 95

cred tables (NIS+), 620

Index-650 Solaris Naming Administration Guide ♦ May 1999

columns, 621
links not allowed, 620

cred tables, see credentials
credentials,

credentials, 72, 84, 639
administration of, 104
administrator’s, 99, 101
authentication components, 85
corrupted, 536
creating, 95
creating credentials, 96, 100 to 103
cred table, description of, 94, 95
credential information, 85
DES, 73, 85, 89
DES verification field, 90
DES, components of, 88
DES, details of, 89
DES, generation of, 90
how created, 97
LOCAL, 73
machine, 72
modifying credentials, 96
passwd, and, 161
principal authentication, 85 to 87
principal names, 98
problem solving, 532
removing, 104
removing credentials, 97
resetting, 532
secure RPC netnames, 98
storage of, 93
time stamp, 87
types of and users, 74
updating, 104
user, 72

credentials, see cred tables
cred table,

credentials, see keys
keys,

cron files, 202, 212
crontab, 326

NIS maps propagating, 324
NIS, problems, 555

crontab files, 324
backup (NIS+), 274
NIS, problems, 555

.cshrc files, 342
ctx_dir, 377

backup of, 274
ctx_dir directories, 42, 561

FNS mapping to, 423
ctx_dir directory

creation of, 433

D
daemons

in.named, 477
NIS, 295
NIS, not running, 553
npc.nisd, 205
npc.nisd EMULYP -Y -B, 206
npc.nisd, DNS forwarding, 206
npc.nisd, NIS-compatibility, 205
npc.nisd, security level, 205
npc.nisd, starting, 205, 206
npc.nisd, stopping, 207
rpc.nisd dies, 542
rpc.nisd, failure of, 524
rpc.nisd, problems, 523
rpc.yppasswdd daemon, 296
rpc.ypupdated daemon, 296
ypbind daemon, 296
ypserv daemon, 296
ypupdated, 304
ypxfr daemon, 296

data encrypting key, 639
data encryption standard, see DES,
data.dict files, 40, 276
/data directories (NIS+), 276
Database corrupted messages (NIS+), 523
Database format error messages (DNS), 561
db.ADDR files, see hosts.rev files,
db.cache files (DNS), see named.ca files,
db.cache files, see named.local files,
db.domain files, see hosts (DNS files),
dbm, 322, 323
decimal dotted notation, 639
defaultdomain files

uninstalling NIS+, 287
DES, 639
DES credentials, see credentials,
destroy, 129
destroy rights, see security, access rights,
.dict files, 40, 528

Index-651

directories, see NIS+ directories
NIS+,

directory, 639
directory cache, 48, 639
directory name error messages (NIS+), 521
directory objects, see NIS+ directories,
disk space insufficient (NIS+), 544
distinguished name, 639
DNS, 8, 329, 474, 639, 640

See also error messages,
A record, 499
administrative domains, 475, 476
bogus name logging, 503
boot files, 488
cache-only servers, 477
Can’t find messages, 559
changes erratic, 557
class fields, 494
clients, 474
clients, resolver and, 477
CNAME record, 501
control entries, 495
data files, 488
data files, names of, 488
Database format error messages, 560
default domain name, 503
domain names, 481
domain names, fully qualified, 482
domain names, registering, 481
domain names, trailing dots, 505
domains, 478
domains, geographic (Internet), 480
domains, organizational (Internet), 480
domains, top level, 479
email, and, 487
EMULYP -Y -B, 206
error receiving zone transfer

messages, 561
filenames, and, 488
FNS, and, 379, 416
FNS, federating with, 356, 458
FNS, text record format, 631
FN_ID_DCE_UUID, 632
FN_ID_ISO_OID_STRING, 632
FN_ID_STRING, 632
ftp problems, 560
HINFO record, 500
hosts files, 492

hosts.rev files, 492
illegal messages, 561
in-addr.arpa Domain, 484
in.named, 477
in.named, updating, 507
$INCLUDE control entry, 495
$INCLUDE files, 493
Internet, and, 479
Internet, joining, 480
inverse queries, 503
IP addresses, 474
LOCALDOMAIN, 503
machines, adding, 507
machines, removing, 508
modifying, 506
MX record, 502
MX records, 487
name fields, 493
name-address resolution, 474, 476
named.ca files, 492
named.conf file, 489
named.local files, 492
namespace, 478
namespace, hierarchy, 478
network, division into subdomains, 510
NIS, 20
NIS and, 328
NIS+, 20
NIS, and, 292, 293
No such... messages, 560
Non-authoritative answer messages, 560
NS record, 499
nsswitch.conf file, and, 12
nsswitch.conf files, 20, 477
OID, 632
$ORIGIN control entry, 496
overview, 474
primary servers, 477
primary servers, changes on, 507
problem solving, 556
PTR record, 501
record-specific-data fields, 494
record-type fields, 494
reloading data, 507
resolver, 477
resource records, formats of, 493
resource records, special characters, 494

Index-652 Solaris Naming Administration Guide ♦ May 1999

resource records, types of, 496
reverse domain data problems, 558
reverse mapping, 483
reverse resolution, 483
RFC1535, 503
rlogin problems, 560
root domain servers, 475
rpc.nisd starting, 205, 206
rsh problems, 560
secondary servers, 477
server cannot find machine, 556
server failed messages, 559
servers, 474, 484
servers, adding, 509
servers, authoritative, 484
servers, cache-only, 484
servers, caching-only, 485
servers, Internet, 486
servers, master, 485
servers, non-Internet, 487
servers, primary master, 485
servers, root domain, 484, 486
servers, secondary, 484
servers, secondary master, 485
servers, types of, 477
servers, zone master, 484
short names, client cannot use, 558
SOA record, 497
SOA, changing number, 506
Solaris implementation of, 503
subdomains, 478
subdomains, creating, 509
subdomains, names of, 511
subdomains, planning, 510
subdomains, set up, 511
syntax errors, 560
test programs, 503
TTL fields, 494
TXT records (FNS), 458
Unknown field messages, 560
unreachable messages, 559
utility scripts, 503
UUID, 632
version of, 503
WKS record, 500
XFN, text record format, 631
zone expired messages, 559
zone files, 483

zones, 483
DNS zone files, 639
DNS zones, 639
DNS, see DNS, servers

name servers,
DNS, see hosts (DNS files)

hosts files,
DNS, see hosts.rev files

hosts.rev files,
DNS, see named.ca files

cache files,
DNS, see named.conf files

configuration file,
DNS, see named.local files

named.local files,
DNS-forwarding, 639
domain, 639
domain name, 640
domain name error messages (NIS+), 521
Domain Name System, see DNS,
domain names

changing (NIS+), 538
incorrect (NIS), 550
missing (NIS), 550

domainname
uninstalling NIS+, 284

domains, 43
See also DNS,
DNS, trailing dots, 505
domain names (DNS), 481
domain names, fully qualified, 482
domain names, registering, 481
geographic (Internet), 480
in-addr.arpa, 484
Internet, 479
NIS, 292, 295
NIS and NIS+ mixture, 293
NIS+ names of, 53
NIS+, checkpointing, 212
NIS, changing, 328
organizational (Internet), 480
passwd, and, 163

domains, see root domains
root,

Index-653

E
echo, 143
email, see DNS, email,
EMULYP -Y -B, 206
encryption key, 640
enterprise naming services, see naming,
enterprise root, 640
enterprise-level name service, 640
enterprise-level network, 640
entries (table), see tables, entries,
entry, 131, 641
entry corrupt messages (NIS+), 523
error messages, 567

alphabetization of, 568
context of, 567
display of, thresholds, 567
FNS messages, 569
interpretation of, 568
numbers in, 569

error receiving zone transfer messages
(DNS), 561

/etc directories, 342, 539
/etc files, 8, 21, 32, 287, 293, 297, 433

FNS, and, 339, 378
/etc/.rootkey, 111, 539
/etc/.rootkey files

servers (NIS+) replacing, 280
/etc/auto* tables, 528
/etc/auto_master files, 414
/etc/bootparams files, 619
/etc/defaultdomain, 527

uninstalling NIS+, 287
/etc/defaultdomain files, 550
/etc/fn/ directories, 426
/etc/fn/x500.conf files, 461
etc/hosts, 421
/etc/hosts, 4
/etc/hosts files, 428

FNS, and, 410
/etc/init.d/rpc, 206
/etc/init.d/yp, 304
/etc/named.conf file, 490
/etc/named.pid files, 507
etc/passwd files, 421
/etc/passwd files

FNS, and, 410
nisaddent, and, 247

/etc/passwd files, see password data,
/etc/printers.conf, 354
/etc/resolv.conf files

NIS and Internet, 329
/etc/resolve.conf files, 277
/etc/shadow

nisaddent, and, 247
/etc/syslog.conf

error messages, 567
ethers tables (NIS+), 621

address format, 621
columns, 621

expire values, see password data,

F
federated namespace, 641
federated naming service, 641
Federated Naming Service, see FNS,
federated naming system, 641
field, 131
file contexts, 390

administering, 449
creating, 352, 450
creating, command line, 452
creating, input file, 451
hosts, creation, 439
input formats, 453
mounts locations, multiple, 453
names in, 343
users, creation, 439

files contexts
names, composing in, 393

files-based naming, 9
fnattr, 346 to 348, 355, 466, 636

adding, 466, 467
deleting, 466, 468
FN_ID_DCE_UUID, 469
FN_ID_ISO_OID_STRING, 469
listing, 466, 468
modifying, 466, 469
NIS maps, and, 426
options, 355, 467
updating, 466

fnbind, 348, 443
NIS maps, and, 426
NIS+ users, 349

Index-654 Solaris Naming Administration Guide ♦ May 1999

options, 349
options for binding, 444
options for references, 445
syntax for binding names, 443
syntax for references, 444

fncheck, 421
options, 421
syntax, 421

fncopy, 348, 357, 429
/etc files to NIS, 429
NIS to NIS+, 427
options, 358, 427
syntax, 427

fncreate, 343, 345, 348, 351, 410, 438
all-users contexts, 435
creating FNS namespace, 343
enterprise contexts, 432
fails, 563
generic contexts, 438
hosts contexts, 434, 435
hosts file contexts, 439
name service, default, 343
name service, non-default, 343
NIS maps, and, 426
NIS+ users, 349
NIS+, and, 344
NIS, and, 345, 410
NSID contexts, 439
options, 351, 432
orgunit contexts, 433
service contexts, 437
single-user contexts, 436
site contexts, 438
syntax, 432
usesr file contexts, 439

fncreate_fs, 348, 352, 454
command line, 452
compatibility, backward, 454
creating file contexts, 450
example, 451
input file, 451
input formats, 453
mounts locations, multiple, 453
NIS, SKI and, 338, 378
onc_fn_fs reference type, 451
onc_fn_fs_mount, 451
options, 450
syntax, 450

variables, use of, 453
fncreate_printer, 348, 353, 354

NIS, SKI and, 338, 378
fndestroy, 348, 355, 446

fails, 563
NIS maps, and, 426

fnlist, 345, 423
context contents, 346
NIS maps, and, 426
options, 346, 441
suborganizations not listed, 562
syntax, 441

fnlookup, 345, 346, 423
NIS maps, and, 426
options, 347, 440
syntax, 440

fnrename, 446
NIS maps, and, 426

FNS, 10, 336, 344, 367, 423, 641
See also error messages,
... (enterprise root), 396
_ character in names, 386
access control, 424
access control, changing, 425
administration, 348
administration of, 381
API usage model, 374
applications, and, 373, 374, 380
applications, calendar service

example, 411
applications, policies and, 410
applications, support for, 380
ASN.1, 634
atomic names, 369
attributes, 337, 463
attributes, adding, 466, 467
attributes, deleting, 466, 468
attributes, listing, 466, 468
attributes, modifying, 466, 469
attributes, overview, 370
attributes, updating, 466
attributes, viewing, 347, 463
attributes, working with, 348, 355
automounter, and, 414
binding names to references, 443
binding, command line from, 444
binding, existing to new, 443

Index-655

bindings, creating, 348, 349
bindings, displaying, 346
bindings, removing, 348, 351
bindings, renamng, 446
Cannot obtain initial context

messages, 561
canonical identifies, 403
compatibility, backward, 454
component separators, 387
composite names, 336, 371, 375
composite names, examples, 392
composite names, removing, 446
compound names, 370
contexts, 337
contexts, administering, 440
contexts, bindings displaying of, 440
contexts, cannot create, 563
contexts, cannot remove, 563
contexts, converting, 357
contexts, copying, 348, 357
contexts, creating, 348, 351, 432
contexts, destroying, 348, 355, 446
contexts, initial, 372
contexts, listing, 441
contexts, listing contents, 346
contexts, overview, 369
contexts, populating, 433
contexts, underscore character, 433
contexts, “_” character, 433
creating, 343
ctx_dir directories, 338
DNS, 356, 455, 458
DNS, and, 379
DNS, federating, 416
DNS, text record format, 631
Enterprise Naming Services, 338
enterprise root, 396
enterprise root, ..., 396
enterprise root, //org, 396
enterprise root, files and, 400
enterprise root, hosts and, 399
enterprise root, Organizational

Subunits, 397
enterprise root, printers and, 400
enterprise root, services and, 399
enterprise root, sites and, 397
enterprise root, subordinate contexts, 397
enterprise root, users and, 398

/etc files, 339, 378
/etc files to NIS, 429
/etc files, and, 345, 428
examples, 358
examples, attributes, 361
examples, attributes changing, 363
examples, attributes listing, 361
examples, creating bindings, 360
examples, listing context bindings, 359
examples, searching for objects, 365
federating naming, 374
file namespace, 385, 390
file naming, 380
file system contexts, creating, 348
file system namespace, 413
file systems, and, 372
files namespace, composing names in, 393
files-based naming, and, 339
fn_ctx_handle_from_initial(), 402
FN_ID_DCE_UUID, 446, 632
FN_ID_ISO_OID_STRING, 446, 632
FN_ID_STRING, 446, 632
global namespace policies, 415
global namespaces, federating, 356, 455
global naming service, 378
global naming services, 339
host bindings, 404
host bindings, thisens, 405
host bindings, thishost, 404
host bindings, thisorgunit, 405
host namespace, 385, 389
host namespace, aliases, 389
host namespace, composing names in, 393
initial context, empty, 561
initial contexts, 372
initial contexts, bindings within, 401, 402
initial contexts, global namespaces, 416
Internet domain names, 416
large contexts, 426
LDAP API, 461
myens, 404
myorgunit, 403
myself, 403
name binding, 443
Name in Use messages, 564
name service, default, 343
name service, non-default, 343

Index-656 Solaris Naming Administration Guide ♦ May 1999

Name Services, 338
name services, and, 419
name services, changing, 420
name services, default, 422
name services, selecting, 420, 422
names, files, 343
names, hosts, 342
names, organization, 340
names, reserved, 391
names, services, 342
names, sites, 341
names, users, 342
namespace updates, 22
namespace, example, 395
namespace, identifiers, 386
namespace, structure of, 393
namespace, updating, 348
namespace, viewing, 345
namespaces, default, 385, 387
namespaces, file system, 413
namespaces, overview, 371
namespaces, printer, 415
namespaces, separators, 391
naming inconsistencies, 421
naming services, 376
naming, enterprise level, 406
NFS file servers, 413
NIS clients, 338, 378
NIS makefiles, and, 426
NIS maps, and, 426
NIS+ and NIS coexisting, 423
NIS+ commands, and, 423
NIS+, administration under, 348
NIS+, and, 338, 344, 377
NIS+, disk space, 344
NIS+, domains, 344
NIS+, mapping to objects, 423
NIS+, moving from NIS, 427
NIS+, user, privileges, 349
NIS, administration under, 348
NIS, and, 294, 338, 345, 377, 425
NIS, fnsypd, and, 339, 378
NIS, SKI and, 339, 378
NIS, user, privileges, 349
nNSReferenceString, 634
no permission messages, 562
nsswitch.conf files, 22
objectReferenceString, 634

OID, 632
onc_fn_enterprise, 636
onc_fn_nisplus_root, 636
Operation Failed, 565
//org (enterprise root), 396
organization namespace, 385, 387
organization namespace, composing

names in, 392
organization namespace, NIS in, 388
organization namespace, NIS+ in, 388
organizations, sub, not listed, 562
orgunit (NIS+), 338
overview, 336, 367
ownership, changing, 425
policies, 340, 384, 394
policies, applications and, 410
policies, calendar service example, 411
policies, files-based naming, 410
policies, global namespaces, 415
policies, NIS and, 409
policies, NIS+ and, 407
policies, NIS+ domains, 407
policies, NIS+ hosts, 408
policies, NIS+ organization names, 408
policies, NIS+ security, 408
policies, NIS+ users, 408
policies, principles, 375
policies, summary of, 340
printer compatibility (/etc files), 429
printer compatibility (NIS), 427
printer contexts, creating, 348
printer namespace, 385, 391, 415
printer naming, 380
problem solving, 561
programming examples, 358
querying, 347
references, 369
references, binding names to, 443
references, command line, 444
reserved names, 391
root reference, X.500, 459
root references, 456
root references, NIS, 457
root references, NIS+, 456
separators, 387
servers, NFS, 413
service namespace, 385, 390

Index-657

service namespace, composing names
in, 393

service namespace, reference registry, 391
shorthand bindings, 405
shorthand bindings, host, 405
shorthand bindings, org, 406
shorthand bindings, site, 406
shorthand bindings, user, 405
site namespace, 385, 389
site namespace, composing names in, 393
slash, trailing, 391
Solaris, and, 376
Solstice AdminSuite, and, 420
thisens, 405
thishost, 404
thisorgunit, 405
underscore in names, 386
user bindings, 403
user bindings, myens, 404
user bindings, myorgunit, 403
user namespace, 385, 390
user namespace, composing names in, 392
users, and, 372
users, privileges, 348
UUID, 632
variables, use of, 453
X.500, 356, 416, 455, 459
X.500 client API, 461
X.500 syntax, 633
X.500, and, 379
X.500, federating, 417
X.500, object classes, 634
X/Open Federated Naming, 336
XDS/XOM API, 461
XFN, 336
xfn API, 373
xfn links, 372
XFN, and, 367

FNS, see file contexts
file contexts,
fs contexts,

FNS, see FNS, enterprise root
root, enterprise,

FNS, see host contexts
host contexts,

FNS, see NISD contexts
namespace identifier contexts,

FNS, see NSID contexts

NSID contexts,
FNS, see org contexts

orgunit contexts,
FNS, see orgunit contexts

orgunit contexts,
FNS, see printer contexts

printer contexts,
FNS, see service contexts

service contexts,
FNS, see site contexts

site contexts,
FNS, see user contexts

user contexts,
fnsearch, 347, 463, 465

Boolean operators, 348
expressions, 465
filter operators, 465
objects and attributes, 465
options, 464
searches, customizing, 465
syntax, 464

fnselect, 343, 420, 422
name service, non-default, 343
options, 422
syntax, 422

fnsypd, 339, 378
fns_hosts.attr files, 428
fns_hosts.attr maps, 426
fns_hosts.ctx files, 428
fns_hosts.ctx maps, 426
fns_org.attr files, 428
fns_org.attr maps, 426
fns_org.ctx files, 428
fns_org.ctx maps, 426
fns_user.attr files, 428
fnunbind, 348, 351

Name in Use messages, 564
NIS maps, and, 426
NIS+ users, 349

fn_ctx_initial.so libraries, 561
FN_ID_DCE_UUID, 446, 469
FN_ID_ISO_OID_STRING, 446, 469
FN_ID_STRING, 446
fs, 342
ftp, 555

problems, 560
full dump rescheduled messages (NIS+), 548

Index-658 Solaris Naming Administration Guide ♦ May 1999

G
generic context, 641
generic contexts

creation, 437
Generic system error messages (NIS+), 521
gethostbyname, 11
getpwnam, 11
getpwuid, 11
getXbyY, 11
GID, 641
global context, 641
global name service, 641
group, 641
group class, 75, 76, 128, 129
group class access rights, 135
group ID, 641
group tables, 77
group tables (NIS+), 622

columns, 622
group.org_dir directories, 184
groups, 183

changing, 150, 151
netgroups, 184
netgroups (NIS), 313, 314
UNIX, 184

groups, see NIS+ groups
NIS+ groups,

groups.org_dir tables, 224
groups_dir, 225

FNS, and, 377
groups_dir directories, 42, 55, 77, 184

FNS mapping to, 423
FNS, and, 338
uninstalling NIS+, 285, 286

H
host context, 641
host contexts, 389, 435

aliases (machine), 389
all, creation of, 434
host aliases, 435
names in, 342
names, composing in, 393
single, creation of, 435

host maps
FNS, and, 377

hosts (machines)

multihome support (NIS), 305
NIS clients, 294
NIS domains, changing, 328
NIS servers, 294
NIS+ names in, 56

hosts contexts
cannot create, 563

hosts database, 320
hosts files, 507
hosts files (DNS), 492
hosts tables (NIS+), 622

columns, 623
hosts.byaddr, 297
hosts.byaddr maps

YP_INTERDOMAIN key, 329
hosts.byname, 297
hosts.byname maps, 297

YP_INTERDOMAIN key, 329
hosts.bynamemaps, 409
hosts.org_dir tables

FNS, and, 408
hosts.rev files, 492, 507

I
illegal messages (DNS), 561
Illegal object type messages (NIS+), 519
implicit naming system pointer, 641
in.named, 8, 477
inactive values, see password data,
indexed name, 642
indexed names (NIS+ tables), 224
initial context, 642
initial context function, 642
initial contexts (FNS), see FNS,
input files, 65
installation, see setup,
Insufficient permission messages (NIS+), 529,

531
insufficient permission messages (NIS+), 539
Internet, 642

See also DNS,
DNS, and, 479
domain names, registering, 481
domains, geographic, 480
domains, organizational, 480
domains, top level, 479

Index-659

FNS, and, 416
joining, 480
NIS, 20
NIS+, 20
NIS, and, 293
nsswitch.conf files, 20
root domain servers, 486

Internet address, 642
Invalid principal name messages (NIS+), 524,

525
IP, 642
IP address, 642
IP addresses

IP addresses, updating, 116
updating, 116

J
junction, 642

K
key (column), 642
key (encrypting), 642
key server, 642
keylogin, 79, 86, 87, 90 to 92, 102, 108, 109,

163, 539
secure and login passwords different, 538

keylogout, 80, 87, 92
keys, 107

changing, 109 to 113
client, updating, 116
common, 87, 88
DES, 87
keylogin, 108
keys, updating client’s, 116
pairs, 98
passwd, and, 162
private, principal’s, 86, 87
private, re-encrypting, 110
private, server’s, 86, 88
problem solving, 534
public, principal’s, 86, 88
public, server’s, 86, 87, 92
random DES, 87
re-encrypting private, 110
time stamp, 87
updating, 114, 115

updating stale, 534
updating, manually, 534

keys (NIS+ tables), 223
keyserv, 79, 287, 537

failure of, 537
uninstalling NIS+, 285, 286

Keyserv fails to encrypt messages (NIS+), 531
keyserver

nsswitch.conf file, and, 17

L
LAN, 642
last.upd files, 276
LDAP API, see X.500,
links (NIS+), see nisln,
list of, 298
LOCAL credentials, see credentials,
local files, see files-based naming,
local-area network, see LAN,
Log corrupted messages (NIS+), 523
log entry corrupt messages (NIS+), 523
log files

disk space, insufficient, 545
.log, 65
.log files, 40, 245

old files, 528
logging in, 154
login, 108
Login incorrect Message, 154
login incorrect message, 546
Login incorrect messages (NIS+), 531
Login Incorrect messages (NIS+), 532
.login files, 343
ls, 414, 539, 549

M
machines, see hosts (machines),
mail, 375
mail exchange records, 642
mail hosts, 642
mail_aliases tables (NIS+), 623

columns, 623
input file format, 623

make, 314, 318, 319, 321, 328
NIS maps, 301

Index-660 Solaris Naming Administration Guide ♦ May 1999

NIS maps and, 300
Make files

NIS, 297
makedbm, 296, 297, 301, 319, 321 to 323

maps, changing server of, 315, 316
slave servers, adding, 326

Makefile, 316, 318, 319
NIS security, 310
non-default maps, modifying, 321
propagating maps, 323
YP_INTERDOMAIN key, 329

Makefile files
4.x compatibility, 306
maps, supported list, 317
multihome support, 305

Makefile files (NIS), see NIS and NIS maps,
maps (NIS), see NIS maps,
master server, 643
master servers, see NIS servers and NIS+

servers,
max values, see password data,
MAXWEEKS, see passwords, MAXWEEKS,
memory insufficient (NIS+), 544
messages (NIS+), 548
min values, see password data,
MINWEEKS, see passwords, MINWEEKS,
MIS, 643
modify, 129
modify rights, see security, access rights,
mymap.asc files, 322

N
Name in Use messages (FNS), 564
name resolution, 643
name server, 643
name service, 643
name service switch, 33, 643
name service switch, see nsswitch.conf files,
name services, see naming,
name space

DNS, 8
name-to-address resolution, 474
named.ca files, 486, 492
named.conf file, 490
named.local files, 492

TXT records (FNS), 458
named.pid files, 507

namespace, 643
namespace identified contexts, see NSID

contexts,
namespace identifier, 643
namespaces, see DNS

DNS,
namespaces, see FNS

FNS,
namespaces, see NIS

NIS,
namespaces, see NIS+

NIS+,
naming, 3

DNS, 8
files-based, 9
FNS, 10
FNS, and, 406
NIS, 9
NIS+, 9, 27, 39
NIS+ directories, 42
NIS+ structure, 40
Solaris name services, 8

naming convention, 643
naming system, 643
naming system pointer, see NNSP,
ndbm, 298

slave servers, adding, 326
ndbm files

maps, changing server of, 316
netgroup files, 313

entries, example, 314
netgroup tables (NIS+), 624

columns, 624
input file format, 624
wildcards in, 625

netgroup.byhost files, 313
netgroup.byuser files, 313
netgroup.org_dir directories, 184
netgroups.org_dir tables, 225
netmasks tables (NIS+), 625

columns, 625
netstat

testing, 551
Network Information Service Plus, see NIS+,
Network Information Service, see NIS,
network mask, 643
network password, 644

Index-661

network password, see Secure RPC password,
networks tables (NIS+), 626

columns, 626
newkey, 80
NFS file servers and FNS, 413
nicknames files, 301
NIS, 9, 291, 329, 644

See also error messages,
See also NIS maps,
4.x compatibility, 305
architecture, 292
binding, 302
binding, broadcast, 303
binding, server-list, 302
broadcast binding, 303
C2 security, 328
client problems, 549
clients, 294, 295
clients, FNS and, 338, 378
clients, not bound to server, 550
commands hang, 549
components, 295
configuration files, modifying, 317
crontab, 324
daemons, 295
daemons, not running, 553
DNS and, 328
DNS, and, 292, 293
domain names, incorrect, 550
domain names, missing, 550
domains, 292, 295
domains, changing, 328
earlier versions and, 304
/etc/nsswitch.conf files and, 306
/etc/nsswitch.conf files and DNS, 306
files-based naming on machines in, 293
FNS, and, 294, 338, 345, 377
FNS, policies and, 409
fnsypd, FNS and, 339, 378
halting, 330
hosts, changing domain of, 328
Internet access, 20
Internet, and, 293
madedbm, 296
make, 301
Make files, 297
makedbm, 301
Makefile entries, adding, 318

Makefile filtering, 318
master servers, 294
multihome support, 305
ndbm format, 298
netgroups, 313, 314
NIS+, and, 293
NIS+, compared to, 29
NIS+, NIS-compatibility mode, 33
NIS+, problems with, 524
NIS+, using with, 32
“not responding” messages, 549
NSKit, 304
on machines in NIS+ environment, 293
Operating systems, different versions

of, 330
organization namespace (FNS), 388
passwd maps auto update, 324
passwd maps, updatingpasswd maps, 312
passwords, user, 312
problems, 549
root entry, 310
root reference (FNS), 456, 457
rpc.yppasswdd, 296, 312
rpc.ypupdated, 296
securenets, 305
security, 305, 310
server binding not possible, 552
server-list binding, 303
servers, 294
servers not available, 550
servers, malfunction, 553
servers, maps different versions, 554
servers, overloaded, 553
SKI, FNS and, 339, 378
slave server, adding, 326
slave servers, 294
slave servers, initializing, 327
software installation, 304
starting, 304
stopping, 304, 330
structure of, 292
subdomains in NIS+ environment, 293
SunOS 4.x compatibility, 305
SUNWypr, 304
SUNWypu, 304
“unavailable” messages, 549
updates, automating, 324

Index-662 Solaris Naming Administration Guide ♦ May 1999

updating via shell scripts, 324
user password locked, 311
useradd, 310
userdel, 311
users, adding, 310
users, administering, 310
utility programs, 296
/var/yp/, 297
versions, earlier, 304
ypbind, 296, 301, 303
ypbind fails, 552
ypbind “can’t” messages, 549
ypcat, 296, 301
ypinit, 296, 301
ypmatch, 296, 301
yppoll, 296
yppush, 296, 301
ypserv, 296, 301, 303
ypservers files, 326
ypset, 296, 301
ypstart, 304
ypstop, 304
ypupdated, 304
ypwhich, 296, 301, 304
ypwhich inconsistent displays, 551
ypxfr, 296, 301

NIS compatibility mode
NIS on individual machines, 293
rpc.nisd starting, 205, 206

nis dump result nis_perror messages
(NIS+), 548

NIS maps, 297, 298, 644
administering, 314
CHKPIPE in Makefile, 319
commands related to, 301
configuration files, modifying, 317
crontab, 324
default, 298
default maps, modifying, 321
descriptions of, 298
displaying contents, 314
displaying contents of, 300
format is ndbm, 298
locating, 300
Make files, 297
Makefile and, 317
Makefile entries, adding, 318
Makefile entries, deleting, 319

Makefile entries, updating, 320
Makefile filtering, 318
Makefile macros, changing, 320
Makefile variables, changing, 320
Makefile, DIR variable, 320
Makefile, DOM variable, 320
Makefile, PWDIR variable, 320
making, 300
new maps, creating, 322
new maps, creating from files, 322
new maps, creating from keyboard, 322
nicknames, 301
non-default, 321
non-default maps, modifying, 321
NOPUSH in Makefile, 319
overview, 297
propagating, 323
server, changing, 315
updates, automating, 324
updating, 300
updating via shell scripts, 324
/var/yp/, 297
working with, 300
yppush in Makefile, 319
ypxfr, crontab file in, 324
ypxfr, invoking directly, 325
ypxfr, logging, 325
ypxfr, shell scripts in, 324

NIS+, 9, 27, 644
See also error messages,
See also nisclient script,
See also nispopulate script,
See also nisserver script,
See also tables (NIS+),
access, 74
access rights, 78
administration, problems, 519
administrator, 79
API, 36
attempt to remove a non-empty table

messages, 522
authentication, 33, 69, 70, 72
Authentication denied messages, 531
Authentication error messages, 531
authorization, 32, 70, 74
authorization classes, 75, 77
automounter, unable to use, 528

Index-663

blanks in names, 528
Busy try again later messages, 540
cache manager, 48
cache manager, missing, 542
Callback: - select failed messages, 523
CALLBACK_SVC: bad argument

messages, 523
Can’t find suitable transport messages, 526
Cannot find messages, 526
Cannot get public key messages, 531
Cannot remove replica messages, 522
“Cannot [do something] with log” type

messages, 544
Changing Key messages, 530
checkpoint fails, 520
Chkey failed messages, 531
clients, 47
cold-start files, 48
commands, 34
commands, FNS and, 423
Corrupt database messages, 523
Corrupt log messages, 523
cred table entries missing, 537
credentials, 72
Database corrupted messages, 523
de-bugging, 518
directories, 42
directories (UNIX), 39
directories, cannot delete, 522
directory cache, 48
directory name error messages, 521
directory names, 54
disk space insufficient, 521
disk space, insufficient, 544
domain name error messages, 521
domain name, changing, 538
domain names, 53
domains, problems with, 526
entry corrupt messages, 523
files, 39
files, problems with, 527
FNS, and, 338, 344, 377
FNS, disk space, 344
FNS, domains, 344
FNS, host namespace, 408
FNS, organization names, 408
FNS, organization namespace, 407
FNS, security and, 408

FNS, upgrading from NIS, 427
FNS, user namespace, 408
full dump rescheduled messages, 548
fully-qualified names, 52
Generic system error messages, 521
group class, 75, 76
group names, 55
groups, can’t add users, 520
groups_dir, cannot delete, 522
host names, 56
Illegal object type messages, 519
Insufficient permission messages, 529, 531
insufficient permission messages, 539
Internet access, 20
Invalid principal name messages, 524, 525
Keyserv fails to encrypt messages, 531
links to tables, 529
Log corrupted messages, 523
log entry corrupt messages, 523
Login incorrect messages, 531
Login Incorrect messages, 532
login, user cannot, 545
logs, cannot truncate, 521
logs, too large, 521, 542
machines, moving to new domain, 538
memory, insufficient, 544
messages, 548

name expansion, 57
names, allowable characters, 57
namespace structure, 40
naming conventions, 52
NIS compatibility, problems, 524
nis dump result nis_perror messages, 548
NIS machines in, 293
NIS+, policies and, 407
NIS, and, 293
NIS, compared to, 29
NIS, using with, 32
NIS-compatibility mode, 33, 69
nisinit fails, 520
NIS_DUMPLATER, 548
NIS_PATH variable, 57
No memory messages, 544
No public key messages, 531
nobody class, 75, 77
Not exist messages, 526
not exist, messages and problems, 527

Index-664 Solaris Naming Administration Guide ♦ May 1999

Not found messages, 526
not have secure RPC credentials

messages, 529, 530
Not responding messages, 540
nsswitch.conf files, 33
objects, FNS and, 423
“object problem” messages, 519
one replica is already resyncing

messages, 548
organization namespace (FNS), 388
org_dir, cannot delete, 522
Out of disk space messages, 544
owner class, 75, 76
ownership problems, 529
partially-qualified names, 52
password commands, 71
password expired messages, 532
passwords different, 538
passwords in /etc/passwd, 538
passwords, cannot change, 547
passwords, login fails, 524
passwords, new, cannot use, 546
performance, problems, 540
Permission denied messages, 524, 525
permission denied messages, 530
Permission denied messages, 531
permission denied messages, 536, 539
Permission denied messages, 546
permission problems, 529
Possible loop detected in namespace

messages, 521
principal names, 56
principals, 33, 47
processes, insufficient, 545
queries hang, 543
recursive groups, 541
replicas, cannot remove directories, 522
replicas, lagging, 527
replicas, out of synch, 527
replicas, too many, 541
replicas, update failure, 547
replica_update: messages, 548
rescheduling the resync messages, 548

resource problems, 544
rlogin, user cannot, 546
root password change, problems, 540
.rootkey files, pre-existing, 539
rpc.nisd dead, 542

rpc.nisd, failure of, 524
rpc.nisd, problems, 523
search paths, 62
security, 32
security commands, 79
Security exception messages, 529, 530
security levels, 71
security overview, 69
security, problems, 531
Server busy. Try Again messages, 543
servers, 44
servers (masters), 45
servers (replicas), 45
servers as clients, 51
servers in parent domain, 51
servers, slow startup, 542
switch file problems, 525
table entry names, 55
table names, 55
table paths, 541
table setup, 64
table structure, 59
table updates, 65
tables, 31, 59
testing, 547
time-to-live, 49
transaction log, 45
troubleshooting, 518
Unable to find messages, 526
Unable to fork messages, 544
Unable to make request messages, 529
UNABLE TO MAKE REQUEST

messages, 530
Unable to stat messages, 526, 529
Unknown user messages, 524, 525
updates, 45
user problems, 545
Wide Area Networks and, 252
world class, 75, 77

NIS+ cache
See also cache manager,
See also nisshowcahce,
contents, displaying, 210

NIS+ daemon, see rpc.nisd daemon,
NIS+ directories, 196

checkpointing, 210, 212
contents, listing, 198

Index-665

creating, 199, 200
domains, expanding into, 244
niscat, 196
nisinit, 207
nisls, 197
nismkdir, 199
nisping, 210, 212
nisping, forcing, 211
nisrm, 204
nisrmdir, 202
nisshowcache, 209
nis_cachemgr, 209
non-root, creating, 199
objects, removing, 204, 205
properties, displaying, 196
removing, 203
replicas, adding, 201, 202
replicas, creating, 200
replicas, disassociating from, 203
root, creating, 199
transaction log, 213

NIS+ environment, 161, 644
NIS+ groups, 184

creating (NIS+), 189
deleting (NIS+), 190
explicit members, 186
explicit non-members, 186
implicit members, 186
implicit non-members, 186
member types (NIS+), 185
members, adding (NIS+), 190, 191
members, listing, 187
members, listing (NIS+), 191
members, removing (NIS+), 192
members, testing (NIS+), 192
NIS+, 184
nistbladm, and, 225
NIS_DEFAULTS, and, 189
NIS_GROUP, setting, 190
non-members, 186
properties, displaying, 187
recursive members, 186
recursive non-members, 186
recursive, performance degradation, 541
removing, 204
specifying (NIS+), 186
syntax (NIS+), 186
users, cannot add, 520

NIS+ object, 644
NIS+ principal, 644
NIS+ tables, 31, 219, 616

automount, additional, 227
auto_home tables, 617
auto_master tables, 617, 618
bootparams tables, 618
client_info tables, 620
column security, 131
columns, components, 226
columns, searching, 241, 242
columns, specifying, 225
columns, types of, 226
contents, displaying, 235
creating, 225
cred table, displaying contents, 236
cred table, links not allowed, 243
cred tables, 620
deleting, 227
emptying, 204
entries, adding, 228, 230
entries, editing, 231, 233
entries, links not allowed, 242
entries, modifying, 231
entries, null termination of, 227
entries, removing, 234
entry security, 131
ethers tables, 621
files, dumping data to, 249
files, transferring data from, 246
group tables, 622
hosts tables, 622
input file format, 616
links, 242
links, do not work, 529
mail_aliases tables, 623
maximum size of, 228
name services, other, 616
netgroup tables, 624
netmasks tables, 625
networks tables, 626
NIS maps, transferring data from, 247
nisaddent, 243, 245
niscat, 235
nisgrep, 238
nisln, 242
nismatch, 238

Index-666 Solaris Naming Administration Guide ♦ May 1999

nissetup, 243
nistbladm, 220
null termination of entries, 227
operators, and, 239
passwd tables, 626
problems with, 520
properties, displaying, 237
protocols tables, 628
regular expressions, in, 239
rpc tables, 629
security, 130, 131
security and levels, 133
services tables, 629
table paths, performance degradation, 541
timezone tables, 630
transferring data, 245
transferring data, options, 245
wildcards, and, 239

NIS+ tables (NIS+)
auto_home tables, 617

NIS+ transaction log, 644
NIS+, see backup-restore (NIS+)

backup,
restore,

NIS+, see credentials
credentials,

NIS+, see keys
keys,

NIS+, see NIS+ cache
cache,

NIS+, see NIS+ directories
directories,

NIS+, see NIS+ tables
tables,

NIS+, see removing NIS+
removing,

NIS+, see server preference (NIS+)
server preference,

NIS+, see TTL
time-to-live,
TTL,

NIS, see NIS maps
maps,

NIS-compatibility mode, 644
nisaddcred, 80, 96, 97, 100, 104

changing keys, 111 to 113
creating credentials, 96, 100 to 103
credential administration, 104

credentials, how created, 97
modifying credentials, 96
removing credentials, 97, 104
time stamp, 87
uninstalling NIS+, 284
updating credentials, 104

nisaddent, 65, 145, 243, 245
automount tables and, 247
data transfer options, 245
files, data from, 246
files, data to, 249
NIS maps, data from, 247
passwdfiles and, 247
syntax, 245
tables, non-standard and, 247

nisbackup, 271, 272, 280
See also backup-restore (NIS+),
automating, 275
backup directory structure, 275
backup files, 276
directories, individual back up, 275
file-system backup, and, 274
interruptions, 272
master server only, 273
namespace, entire, 275
options, 273
over-writing, 274
syntax, 272

niscat, 97, 135, 196, 223, 229, 235
cred table, displaying contents, 236
directory properties, 196
FNS, and, 424
group members, 187
group properties, 187
NP, 236
object properties, displaying, 237
options, 236
Server busy. Try Again messages, 543
syntax, 235

nischgrp, 34, 150, 184
FNS, and, 425
group, changing, 150, 151

nischmod, 34, 130, 145
access rights, adding, 146
access rights, removing, 146
FNS, and, 425

nischown, 34, 149, 162

Index-667

FNS, and, 425
ownership, changing, 149

nischttl, 34, 49, 215, 216
keys, updating, 116

nisclient, 86, 96, 114, 116, 285, 531
uninstalling NIS+, 283

nisdefaults, 34, 141, 142, 537
display options, 141
time-to-live, 215
TTL, 215

nisgrep, 34, 238
operators, and, 239
options, 241
regular expressions, in, 239
searching, first column, 241
searching, multiple columns, 242
searching, specific column, 241
syntax, 240
wildcards, and, 239

nisgrpadm, 34, 184, 188, 191, 225
access rights, 188
group members, listing, 187
group properties, displaying, 187
groups, creating, 189
groups, deleting, 190
members, adding, 190, 191
members, listing, 191
members, removing, 192
members, testing, 192
problems with, 520
removing groups, 204
syntax, 186
syntax for group members, 189
syntax for groups, 188

nisinit, 34, 40, 116, 207, 528, 544
client, initializing, 207
root directories, 199
root master, initializing, 208
uninstalling NIS+, 284

nisinitproblems with, 520
nisln, 34, 242

creating links, 243
cred table and, 243
options, 243
syntax, 243
table entries and, 242

nislog, 34, 213
options, 214

transaction log, displaying, 214
nisls, 34, 184, 197, 198, 528, 562

directories, contents of, 197, 198
FNS, and, 424

nismatch, 34, 97, 105, 238
Changing Key messages, 530
operators, and, 239
options, 241
regular expressions, in, 239
searching, first column, 241
searching, multiple columns, 242
searching, specific column, 241
syntax, 240
wildcards, and, 239

nismkdir, 34, 64, 145, 199, 200
directories, non-root creating, 199, 200
master server only, 200
non-root directories, creating, 199
replicas, adding, 201
replicas, creating, 200
root directories, cannot create, 199

nispasswd, 71, 156, 159
nisping, 34, 65, 211, 213

checkpoint fails, 520
directories, checkpointing, 210, 212
forcing, 211
performance, effect on, 541
replicas, adding, 202
replicas, disassociating from directory, 203
updates, last, 211

nispopulate, 65, 96
nisprefadm, 34, 255 to 257, 261, 267, 270

activating, 270
changing preference numbers, 264
client names, 256
client_info tables, 620
displaying preferences, 256, 259, 260
ending, 269
global preferences, specifying, 260 to 263
global table, 253
list, replacing, 266
local file, 253
local preferences, specifying, 263
local to global, 269
options, 257
preferences, ending use of, 268
preferred servers, designating, 252

Index-668 Solaris Naming Administration Guide ♦ May 1999

Preferred-Only Servers, abandoning, 267
Preferred-Only Servers, specifying, 267
rank numbers, 254, 255
Rank Numbers, specifying, 260
server names, 256
server preferences, modifying, 264
server-use, overview, 253
servers, removing from list, 265
servers, replacing in list, 264
single client, 256
subnet, 256
syntax, 257

nisprefadm, see client_info files and tables
client_info files and tables,

nisrestore, 34, 277, 278
See also backup-restore (NIS+),
directory names, 279
directory, restoring, 278
lookup error, 279
namespace corrupted, restoration of, 279
options, 278
prerequisites, 277
procedures, 278
replica setup, 279
resolve.conf files, 277
rpc.nisd and, 277
servers, replacing, 280
syntax, 278

nisrm, 34, 204, 205
nisrmdir, 34, 202

cannot delete directories, 522
directories, removing, 203
objects, removing, 204, 205
replicas, disassociating, 203

nisserver, 199, 287
replicas (NIS+), setup, 279

nisserver script, 64
nissetup, 64, 243

directories into domains, 244
nisshowcache, 34, 49, 209

contents, displaying, 210
nisstat, 34
nistbladm, 34, 64, 130, 145, 147, 178, 220, 222,

233, 541
access rights, columns, 147 to 149
automount tables, additional, 227
column values, 221
columns, components, 226

columns, null termination of, 227
columns, specifying, 225
columns, types, 226
creating a table, 225
days, number of, 166
emptying tables, 204
entries, adding, 228
entries, editing, 231, 233
entries, forcing, 230
entries, identical, 229
entries, modifying, 231
entries, multiple, 229
entries, over-writing, 230
entries, removing, 234
expire values, 165
groups, and, 224
groups, NIS+ and, 185
inactive days, setting, 177, 178
inactive values, 165
indexed names, 224
keys, 223
max values, 164
min values, 164
netgroups, and, 225
NIS+ groups, and, 184, 225
options, 221
password aging, 175
password expiration, setting, 176
password expiration, unsetting, 177
passwords, and, 163
searchable columns, 223
shadow column fields, 164
syntax, 220
tables, deleting, 227
UNIX groups, and, 224
unused values, 166
warn values, 165

nistest, 34
nisupdkeys, 34, 80, 93, 112 to 114, 116

arguments, 115
cold-start files, and, 114
updating keys, examples, 114, 115
updating stale keys, 534

nis_cachemgr, 34
See also cache manager,
uninstalling NIS+, 284 to 286

nis_cachmgr, 93

Index-669

nis_checkpoint, 34
NIS_COLD_START files

servers (NIS+) replacing, 280
NIS_COLD_START files, see cold-start files,
NIS_DEFAULTS, 130, 136, 141, 143

displaying value of, 143
resetting, 144

$NIS_DEFAULTS, 144
NIS_DUMPLATER, 548
NIS_GROUP, 136, 190
NIS_OPTIONS

de-bugging, 518
options, 518

NIS_PATH
performance, effect on, 541
problems with, 526

NIS_PATH variable, 57
NIS_SHARED_DIRACHE files, 209
NIS_SHARED_DIRCACHE files

See also cache manager,
NNSP, 644
No memory messages (NIS+), 544
no permission messages (FNS), 562
No public key messages (NIS+), 531
No such... messages (DNS), 560
nobody class, 75, 77, 129
Non-authoritative answer messages

(DNS), 560
NOPUSH in Makefile, 319
Not exist messages (NIS+), 526
Not found messages (NIS+), 526
not have secure RPC credentials messages

(NIS+), 529, 530
Not responding messages (NIS+), 540
“not responding” messages (NIS), 549
NP, 236
npc.nisd, 205
nscd

uninstalling NIS+, 285, 286
NSID contexts

creation, 439
NSKit, see NIS,
nsswitch.conf, xxx
nsswitch.conf files, 8, 11, 16, 17, 21, 22, 33, 159,

511, 557
+/- Syntax, 21
actions, 14
Auto_home table, 16

Auto_master table, 16
comments in, 16
compat, 21
continue, 14
default file, 19
default template files, 17
DNS and NIS, 20
DNS and NIS+, 20
DNS, and, 12, 20, 477
examples, 18, 19
FNS, and, 22
FNS, consistency with, 22
FNS, updates, 22
format of, 12
incorrect syntax, 16
information sources, 13
Internet access, 20
keyserver entry, 17
messages, status, 14
missing, 16
modifying, 15
NIS, 293
NIS and, 306
NIS and DNS, 306
NIS+ - NIS compatibility problems, 524
NIS+ problems with, 526
NIS+, and, 33
NOTFOUND=continue, 15
nsswitch.files files, 17
nsswitch.nis files, 17
nsswitch.nisplus files, 17
options, 14
passwd_compat, 21
password data, 21
passwords, and, 546
problems, 525
publickey entry, 17
return, 14
search criteria, 13, 15
sources, 13
status messages, 14, 15
SUCCESS=return, 15
templates, 12, 17
timezone table, 16
TRYAGAIN=continue, 15
UNAVAIL=continue, 15
uninstalling NIS+, 287

Index-670 Solaris Naming Administration Guide ♦ May 1999

nsswitch.nis, 18
null termination, 227

O
“object problem” messages (NIS+), 519
one replica is already resyncing messages

(NIS+), 548
Operation Failed message (FNS), 565
org contexts, 434
org//, see orgunit contexts,
org//service/printer, 342
organization maps, 377
organizational unit context, 645
organizational units, 644
orgunit contexts, 387

creating, 433
example, 433
names in, 340
names, composing in, 392
NIS+, and, 433
NIS, and, 433
population of, 434

org_dir
FNS, and, 377

org_dir directories, 42, 55, 64, 77, 433
FNS mapping to, 423
FNS, and, 338
uninstalling NIS+, 285, 286

org_dir. directories, 522
Out of disk space messages (NIS+), 544
owner class, 75, 76, 128, 129

P
parent context, 645
parent domain, 645
PASSLENGTH, see passwords, PASSLENGTH,
passwd, 71, 79, 81, 157, 159, 160, 167, 170, 312,

525
access rights, 162
age limit, 172
aging, turning off, 175
changing passwords, 156, 169
credentials, and, 161
data, displaying, 167
domains, other, 163
forcing users to change, 172, 175

keys, and, 162
locking passwords, 170
minimum life, setting, 172
NIS map auto updated, 324
NIS+ environment, 161
nispasswd, and, 159
password aging, 171
password aging limitations, 171
permissions, and, 162
rlogin problems, 546
root’s, changing, 157
unlocking passwords, 170
user cannot change password, 547
user problems, 545
vacation locks, 170
warning period, setting, 174
yppasswd, and, 160

passwd files
4.x compatibility (NIS), 306
nisaddent, and, 247
Solaris 1.x formats, 310
users, adding (Solaris 1.x), 311

passwd files, see password data,
passwd maps

users, adding, 311
passwd maps, see password data,
passwd tables, 400
passwd tables (NIS+), 626

+/- syntax, 628
columns, 627
shadow column data, 627

passwd tables, see password data,
passwd.adjunct files, 313, 317, 328
passwd.byname maps

FNS, and, 409
passwd.org_dir tables

FNS, and, 408
password

secure and login different, 538
password commands, 71
password data

See also security,
days, number of, 166
displaying, 167
expire values, 165
inactive values, 165
login different from secure, 92

Index-671

login password, 92
max values, 164
min values, 164
NIS, and, 310
nsswitch.conf file, and, 160
nsswitch.conf file, over-riding, 161
nsswitch.conf files, 21
root in NIS maps, 310
secure different from login, 92
secure RPC password, 92
shadow column fields, 164
unused values, 166
warn values, 165

password expired Message, 155
password expired messages (NIS+), 532
password will expire Message, 155
passwords

See also password data,
administering, 159
age limiting, 172
aging, 171, 176
aging limitations, 171
aging, turning off, 175
changing, 156, 169
choosing, 157
criteria, setting defaults, 178
default criteria, setting, 178
expiration of privilege, setting, 176
expiration of privilege, unsetting, 177
forcing users to change, 172, 175
inactive days, setting, 177, 178
locking, 170
logging in, 154
login fails after change, 524
login failures, maximum, 181
Login incorrect Message, 154
login, maximum time for, 182
maximum tries, 181
minimum life, setting, 172
new, cannot use, 546
NIS+ environment, 161
NIS, and, 312
nistbladm, 163
not have secure RPC credentials,

messages, 530
nsswitch.conf file, and, 159, 160, 546
nsswitch.conf file, over-riding, 161
passwd, 160

password expired Message, 155
Permission denied Message, 156
privileges (user), 175, 176
requirements, 157
rlogin problems, 546
root change, problems, 540
root’s, changing, 157
rpc.yppasswdd (NIS), 312
Sorry: less than Message, 156
unlocking, 170
user cannot change, 547
user problems, 545
using, 154
vacation locks, 170
warning period, setting, 174
will expire Message, 155

performance
NIS+ server search, 252

Permission denied Message, 156
Permission denied messages (NIS+), 524, 525
permission denied messages (NIS+), 530
Permission denied messages (NIS+), 531
permission denied messages (NIS+), 536, 539
Permission denied messages (NIS+), 546
ping, 553
pinging, 645
populate tables, 646
populating NIS+ tables, see NIS+ tables,
Possible loop detected in namespace messages

(NIS+), 521
preference rank number, 645
preference rank numbers, see client_info files

and tables,
preferred server, 645
preferred server list, 645
principal, 645
principals, 33
printer contexts, 391

creating, 353
creation, 437

printers.conf files, 354
private key, 645
processes, insufficient (NIS+), 545
protocols tables, 628
protocols tables (NIS+), 628

columns, 628
public key, 646

Index-672 Solaris Naming Administration Guide ♦ May 1999

PWDIR/security/passwd.adjunct files, 328
$PWDIR/security/passwd.adjunct, 317
$PWDIR/shadow, 306

R
rcp, 375, 555

NIS maps, transferring, 325
rdist

NIS maps, transferring, 325
read rights, see security, access rights,
record, 646
reference, 646
reference registry (FNS), 391
remote procedure call, see RPC,
removing NIS+, 283

client, from, 283
namespace, from, 286
server, from, 284

replica server, 646
replica servers, see NIS+,
replica_update: messages (NIS+), 548
rescheduling the resync messages (NIS+), 548
resolv.conf files, 511

NIS and Internet, 329
resolve.conf files, 277
resolver, 477
resolver, see DNS, resolver,
resource record, 493
restore (NIS+), see backup-restore (NIS+),
reverse resolution, 646
rlogin, 546

problems, 546, 560
user problems, 545

root context, 646
root domain, 646
root master server, 646
root reference, see FNS, root reference,
root replica server, 646
root servers

See also servers,
initializing, 208

root.cache files (DNS), see named.ca files,
root.object files (NIS+), 276
.rootkey files, 284, 539

pre-existing, 539
servers (NIS+) replacing, 280
uninstalling NIS+, 286

root_dir files (NIS+), 276
rows (table), see tables, entries,
RPC, 646
rpc files, 206
rpc tables (NIS+), 629

columns, 629
example, 629

rpc.nisd, 40, 206, 279, 280, 542, 544
dies, 542
DNS forwarding, 205, 206
EMULYP -Y -B, 206
failure of, 228
multiple parent processes, 523
NIS-compatibility mode, 205, 206
options, 206
restore (NIS+), and, 277
security level, default, 205
stopping, 207
table size and, 228
uninstalling NIS+, 285, 286

rpc.nispasswdd
maximum password tries, 181
password login failures, 181
password maximum login time, 182

rpc.yppasswdd, 312, 313
4.x compatibility (NIS), 306
passwd updates maps, 324

rpc.yppasswdd daemon, 296
rpc.ypupdated daemon, 296
rsh

problems, 560

S
scripts (NIS+), see NIS+,
secure RPC netname, 88, 89

description of, 99
principal name, and, 98

Secure RPC password, 646
securenets files, 305
security

See also password data,
access, 74
access rights, 128 to 130
access rights (create), 134
access rights (destroy), 134
access rights (modify), 134

Index-673

access rights (read), 134
access rights, adding, 146
access rights, changing, 130, 145
access rights, column (table), 131
access rights, columns, 147 to 149
access rights, combining, 129
access rights, command specifying, 137
access rights, concatenation, 129
access rights, default, 130
access rights, granting, 137
access rights, levels, 133
access rights, non-default, 145
access rights, removing, 146
access rights, syntax, 138 to 141
access rights, table, 130
access rights, table entries, 131
access rights, tables, 131, 133
access rights, viewing, 135
administrator, 79
administrator’s credentials, 99, 101
authentication, 69, 70, 72
authorization, 70, 74
authorization classes, 75, 77
C2 security, NIS and, 328
commands, access specification in, 137
create rights, 134
credentials, 72
defaults, changing, 144
defaults, displaying, 141
defaults, setting, 143
destroy rights, 134
expire values, 165
group class, 75, 76
groups, changing, 150, 151
inactive values, 165
keys, 107
levels (NIS+), 71
max values, 164
min values, 164
modify rights, 134
NIS, 305
NIS+ access rights, 78
NIS+ commands, 79
NIS+ overview, 67, 69
NIS+, and, 32
NIS, and, 310
NIS, C2 security and, 328
NIS-compatibility mode, 69

nobody class, 75, 77
owner class, 75, 76
ownership, changing, 149
password commands, 71
read rights, 134
root in NIS maps, 310
secure RPC netnames, 98
securenets files, 305
servers, granting access, 137
shadow column fields, 164
specifying non-default access rights, 145
syntax, access rights, 138 to 141
table columns, 131
table entries, 131
tables, 130, 131
tables and levels, 133
unused values, 166
warn values, 165
world class, 75, 77

Security exception messages (NIS+), 529, 530
security, see credentials

credentials,
security, see keys

keys,
sed, 322
sendmail

mail_aliases Table, and, 623
server, 647
Server busy. Try Again messages (NIS+), 543
server failed message (DNS, 559
server list, 647
server preference (NIS+), 251, 256

activating, 270
all servers, 255
cache manager and, 256
cache manager required, 253
changing numbers, 264
client names, 256
client search behavior, 252
default, 255
displaying, 256, 259, 260
ending, 269
ending use of, 268
global, 253
global, specifying, 260 to 263
list, replacing, 266
local, 253

Index-674 Solaris Naming Administration Guide ♦ May 1999

local to global, 269
local, specifying, 263
modifying, 264
preferred only servers, 255
preferred servers, designating, 252
Preferred-Only Servers, abandoning, 267
Preferred-Only Servers, specifying, 266,

267
rank numbers, 254, 255
Rank Numbers, specifying, 260
server names, 256
server-use, overview, 253
servers, removing from list, 265
servers, replacing in list, 264
single client, 256
subnet, 256
when take effect, 256

servers
access rights, granting of, 137
DNS, 484
DNS, types of, 477
NIS slave, adding, 326
NIS slaves, initializing, 327
NIS+, 44
NIS+ master, 45
NIS+ replicas, 45
NIS+ replicas, adding, 201
NIS+ replicas, checkpointing, 210
NIS+ replicas, creating, 200
NIS+ replicas, last update, 211
NIS+, domains they reside in, 201
not available (NIS), 550
replacing (NIS+), 280
replicas (NIS+), setup by restore, 279
ypservers files, 326

servers, see root servers
root servers,

servers, see server preference (NIS+)
server preference,

service, 342
service context, 647
service contexts, 390

creation, 436
names in, 342
names, composing in, 393
reference registry, 391

services tables (NIS+), 629
columns, 630

setenv, 144
setup

replacing NIS+ servers, 280
replicas (NIS+), setup by restore, 279
tables (NIS+), 64

setup scripts (NIS+), see NIS+,
shadow column, 627
shadow files

See also password data,
NIS and, 306
nisaddent, and, 247
Solaris 1.x formats, 310

site context, 647
site contexts, 389, 438

creation, 438
names in, 341
names, composing in, 393

sites.byname, 315
sites.byname files

maps, changing server of, 316
slave server, 647
slave servers, see NIS,
snoop, 536
Solaris name services, 8

See also naming,
Sorry: less than Message, 156
strong separation, 647
subcontext, 647
subnet, 647
SUNWnsktr, 304
SUNWnsktu, 304
SUNWypr, 304
SUNWypu, 304
switch files

nsswitch.nis, 18
switch files, see nsswitch.conf files,
switch, see nsswitch.conf files,
syslog, 558
syslog files

checkpointing errors, 520
syslog.conf files

error messages, 567

T
table, 647
tables (NIS+), 59

Index-675

automount maps, additional, 61
columns, 61
entries, 61
entry names, 55
indexed names, 55
links, creating, 243
names, 55
search paths, 62
setup, 64
structure, 59
updates, 65

tables, see NIS+ tables,
TCP, 647
TCP/IP, 647
time stamp, 87, 88
time-to-live, see TTL,
timezone tables, 16, 630
timezone tables (NIS+), 630

columns, 630
tmp files

disk space, insufficient, 545
/tmp/CALLS files, 519
/tmp/temp_file files, 326
trans.log files, 40, 210
transaction log

contents, displaying, 214
nislog, 213
XID, 214

Transport Control Protocol, 648
TTL, 215

changing, 215
nisdefaults, 215
objects of, changing, 217
options, 216
table entries of, changing, 217
values, 216

U
Unable to find messages (NIS+), 526
Unable to fork messages (NIS+), 544
Unable to make request messages (NIS+), 529
UNABLE TO MAKE REQUEST messages

(NIS+), 530
Unable to stat messages (NIS+), 526, 529
“unavailable” messages (NIS), 549
uninstalling NIS+, see removing NIS+,
Unknown field messages (DNS), 560

Unknown user messages (NIS+), 524, 525
unreachable messages (DNS), 559
user context, 648
user contexts, 390

all-users, creation of, 435
cannot create, 563
names in, 342
names, composing in, 392
single-user, creation of, 436

User ID 0, 540
user maps

FNS, and, 377
useradd, 310

password is locked, 311
userdel, 311, 312
users

adding (NIS), 310
netgroups, 313, 314
NIS, 310
passwd maps, updating, 312
passwords (NIS), 312
useradd, 310
userdel (NIS), 311

/usr/bin directories, 39
/usr/lib directories, 39
/usr/lib/fn/fn_ctx_initial.so files, 561
/usr/lib/netsvc/yp directories, 324
/usr/lib/netsvc/yp/ypstart script

NIS security, 310
/usr/lib/nis, 114, 210
/usr/lib/nis directories, 39
/usr/sbin directories, 39
/usr/sbin/makedbm

non-default maps, modifying, 321

V
/var, 345
/var/fn, 345, 348
/var/fn directories, 339, 343, 378, 381, 410, 428
/var/nis, 204, 245
/var/nis directories, 39, 40

old filenames, 528
uninstalling NIS+, 285, 287

/var/nis/client_info, 259
/var/nis/client_info files and tables, see

client_info files and tables,

Index-676 Solaris Naming Administration Guide ♦ May 1999

/var/nis/data.dict, 40
/var/nis/data directories, 39, 40, 527, 528
/var/nis/data/trans.log, 210
/var/nis/NIS_COLD_START

servers (NIS+) replacing, 280
/var/nis/NIS_SHARED_DIRACHE files, 209
/var/nis/NIS_SHARED_DIRCACHE files, 93
/var/nis/rep/org_dir directories, 522
/var/nis/rep/serving_list files, 522
/var/spool/cron/crontabs/root files

NIS, problems, 555
/var/yp, 248, 550

FNS, and, 338
/var/yp directories

NIS security, 310
/var/yp/, 297, 322
/var/yp/ directories, 377, 426

FNS, and, 410
/var/yp/binding/ files, 551
/var/yp/Makefile

maps, supported list, 317
/var/yp/Makefile files

4.x compatibility, 306
/var/yp/mymap.asc, 322
/var/yp/nicknames files, 301
/var/yp/securenets files, 305
/var/yp/ypxfr.log files, 326

W
WAN, 648

NIS+ and, 252
warn values, see password data,
WARNWEEKS, see passwords,

WARNWEEKS,
weak separation, 648
wide-area network, see WAN,
workstations, see hosts (machines),
world class, 75, 77, 128, 129

X
X.500, 648

ASN.1, 634, 635
client API (FNS), 461
FNS syntax, 633
FNS, and, 379, 416, 417
FNS, federating with, 356, 459

LDAP API (FNS), 461
nNSReferenceString, 634
object classes, FNS, 634
objectReferenceString, 634
onc_fn_enterprise, 636
onc_fn_nisplus_root, 636
root reference (FNS), 459
XDS/XOM API (FNS), 461

X/Open Federated Naming, see FNS,
x500.conf files, 461
XDR encoding (NIS+), 276
XDS/XOM API, see X.500,
XFN link, 648
xfn links, see FNS,
XFN, see FNS,
/xfn, 372
/xfn directories, 413, 414
XID in transaction log, 214

Y
ypbind, 301, 303, 315, 553

“can’t” messages, 549
client not bound, 550
fails, 552
slave servers, adding, 327

ypbind daemon, 296
ypbind “can’t” messages (NIS), 549
ypcat, 21, 296, 300, 301, 307

netgroup tables, and, 624
ypinit, 296, 301, 326

default maps, 321
slave servers, adding, 327

ypmatch, 296, 301
yppasswd, 160
yppoll, 296
yppush, 296, 301, 314, 316, 323

maps, changing server of, 316
yppush in Makefile, 319
yppush maps

NIS, problems, 555
ypserv, 301, 303, 329, 553

failure of, 555
multihome support, 305

ypserv daemon, 296
ypservers, 326
ypservers files

Index-677

slave server, adding, 326
ypservers maps

NIS, problems, 555
ypset, 296, 301
ypstart, 304
ypstart files, 313
ypstop, 304, 327
ypupdate, 33
ypupdated daemon, 304
ypwhich, 296, 300, 301, 304

display inconsistent, 551
ypxfr, 33, 296, 301, 322, 554

invoking directly, 325
logging, 325
logging output, 554

maps, changing server of, 315, 317
shell script, 555
shell scripts and, 325

ypxfr daemon, 296
ypxfr.log files, 326, 554
ypxfr_1perday, 324
ypxfr_1perhour, 324
ypxfr_2perday, 324
YP_INTERDOMAIN key, 329

Z
zone expired messages (DNS), 559
zones (DNS), see DNS,

Index-678 Solaris Naming Administration Guide ♦ May 1999

